Some definite integrals of the logarithm, In(x), with
rational functions, using complex contour integration and infinite series

John Coffey, Cheshire, England

In this document I describe a hobby interest I have enjoyed, working out some definite integrals involving
Inz (log,z) combined with rational functions of polynomials. I am sharing this over the Internet in the
hope that it might help other students gain confidence with complex integration around contours in the
complex plane. In some cases I have been unable to find a contour capable of giving an evaluation in
closed form, and T suspect that such a contour may not exist; I have therefore tried to perform a typical
such integral using summation of infinite series. The methods used here were all known well before 1850;
there is nothing here for the modern researcher. Moreover, most of the integrals here have been studied
by other authors and several are in text books. I cite these references and point out some errors in books.
T make little claim for originality of conclusion, though all the working and comments here are my own.

My exploration of this topic has been just that — a personal journey through an area of maths with many
dead ends, moments of bafflement, interesting diversions and a few great views on the way. Accordingly,
my account is not presented as a formal maths paper for a refereed journal, but as a rambling narrative in
which I invite the reader to share. In places I conjecture some general results; perhaps other enthusiasts
will either prove or disprove them.
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1. The initial challenge
I got the idea for investigating these integrals from a puzzle question set in the 2005 William Lowell
Putnam maths competition, organised by the Mathematics Association of America:

1
Evaluate/ ln(f——i_l) dz.
0o z¢4+1

The integrand is well behaved, but it does not have a ‘primitive’ — that is, a function which, when
differentiated with respect to z, gives the integrand. Numerical integration gives 0-272198. Following
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a hunch motivated by the numerator and denominator of the integrand, I identified this with g 1In2 =
0-272198261288 - - -. So we have an answer, but what about the proof? I could have looked up the answer
on the Putnam competition web site, but instead chose to have a go myself — and I have not yet looked
up the official answer. My personal search for a satisfactory proof led me to consider this and related
integrals. I hope you share in some of my enjoyment.

In my first attempt I converted the integrand into infinite series, integrated term by term, and showed

that the result could be rearranged to look like the product of two series, one for 7 and the other for
In2. This is described in the Appendix. This method requires that the series involved be uniformly

convergent, since only then can they be manipulated and still converge in a well behaved manner.

My explorations of this topic were well advanced when I came across a book, published in 2004 by C.U.P,
with the wonderful title Irresistible Integrals by George Boros and Victor Moll. On page 243 they give
a short, clever and elegant proof of the Putnam challenge integral, commenting that it was originally
evaluated in 1844 by Serret of the Serret-Frenet differential geometry formula. (Why is it that, when you
have toiled over some maths for many hours or even days, someone points out a three line solution!?)
Here is the proof based on that in Boros and Moll’s book. It uses only real variables and the symmetry
of trigonometric functions.

Make the change of variable z = tan 6, dz = df/ cos® § = (1 + tan? 0) df to obtain

11 1 /4
/ %dw =/ In(tan6 + 1) d6.
o zf+1 0

Now use %(sin& + cos ) = sin(0 + 7 /4):

Uin(z + 1) /4 - )
| e = [ V2w sing £ 5) - n cos] do = frin2

because the two log-trigonometric integrals cancel by virtue of their reflection symmetry in the line
6 = 7 /8. Isn’t that neat! It relies, however, on symmetries not possessed by similar integrals and so
probably cannot be widely generalised.

2. Background on complex integration of functions involving Inz

2.1 The meaning of evaluating an integral

At the risk of being tedious, may I first share some philosophical points about what we mean by ‘evaluating
an integral algebraically’With indefinite integrals it means finding a ‘primitive’; that is, some combination
of elementary functions (or at least well understood and tabulated functions such as Bessel functions)
which, when differentiated, gives the integrand in question. In school when we start learning calculus, the
integration exercises have been selected to have primitives which can be discovered by standard techniques
such as integration by substitution or by parts. Yet it is well known that these classroom problems are the
exceptions; most indefinite integrals composed of combinations of polynomials and elementary function
do not have a primitive. Moreover, as far as I know, there is no way of telling in advance which integrand
will have a primitive. For example,

1
%dx = /lnxd(lna:) = %ln2x
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in readily integrated, but

T
—dx=Fi(2 Inz
Inz ( )
does not have a primitive in terms of Inz; instead it requires the special function, Ei(z), which is the
tabulated Exponential Integral. A simple change to

and the integral does not have a primitive even in terms of the Exponential Integral. It is as if the
set of functions which can be made from finite combinations of polynomials and elementary tabulated
functions, infinite though it is, is not sufficient to provide a primitive for most of the integrands which are
themselves composed of polynomials and elementary functions. I see an analogy here with the algebraic
numbers and the real numbers, in that the algebraics, though infinite in number, are not a complete set
— there are an infinity of transcendental numbers which inhabit the spaces between every pair of adjacent
algebraic numbers.

Much the same can be said of the evaluation of definite integrals. Some will turn out to have values which
we can express in terms of well known constants such as 7 or In 2, but most will not — they are simply
themselves and have their own value, not shared with other integrals. Therefore much of this paper is
about trying to find a few definite integrals involving the logarithm which can be evaluated in terms
of well documented constants. One might question whether this gives much more insight than merely
knowing the numerical value from quadrature, considered that numerical integration of many smooth
functions can be now performed to 20 or more significant figures. For instance, does knowing that the
value of the Putnam challenge integral is 7w In2/8 give us any more understanding than knowing that it
has a value very close to 0 - 2721982612887 1 think the answer is Yes. It tells us something about the
anatomy of the integral and the ubiquitous natures of 7 and In2. At first sight these two constants seem
to have little in common. However they can be represented as integrals and as infinite series which show

a similar structure:
1
1yl / _dw
7 9 0 $2 -+ 1

. .
1 rdx
1_...=9

M /0332+1

at|—=

arctanlztan_llz%zl_%+

m2=1-1+

N

1
3
In this paper we will meet 7 and In2 many times.

But that’s enough philosophy for now.

2.2 Structure of the complex logarithm

I presume the reader to be acquainted with, if not expert in, complex integration for evaluation of definite
integrals. Several text books give integrals involving Inz and T give a list of those I have found helpful in
the §4. We will be using the residue theorem: that the integral round any closed contour of an analytic
function is equal to 272 times the sum of residues at the poles enclosed by the contour.

May I next ask you also to recall the properties of the complex logarithm. If z = z + 1y is expressed in
exponential form /(2% + y?) € where tan6 = y/z, the logarithm of z is

1
Inz=1Invz2+y2+10 = §ltl(x2 +y%) +atan"ty/z.
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The real part — —oc as x2 +y? — 0, 0 being a singular point about which In z does not have a Laurent
expansion. The arctangent in the imaginary part is infinitely multivalued such that each clockwise circuit
around z = 0 increases &lnz by 27, and we say that the path has moved onto another branch of the
logarithm. You may picture the logarithm as having a helical structure, like a multi-storey car park;
then circling round by a full turn takes you to the next pitch of the helix (the next floor of the car park).
Since any closed loop contour of integration must remain on one branch (one floor of the car park), it is
necessary to specify a ‘branch cut’ as a boundary not to be crossed. This cut will run from the branch
point at z = 0 out to infinity. We are free to choose its direction. Indeed there is no a priori reason for
the cut to be a straight line, though it is common to cut along the x axis either from —oo to 0, or from
0 to +00. Across this cut the value of &lnz jumps discontinuously by 2.

With this background information, we can evaluate the Putnam challenge integral.

1
| 1
3. The Putnam challenge integral by contour integration: / M dz

o x2+1
In(z+1) dz

z2+1
Step 1: Consider the singularities of the integrand § %dz. In(z + 1) goes to —oc0 as z — —1, and

there are two poles, each of order 1, at z = £1, where the denominator goes to zero.

3.1 Contour evaluation of fol

Step 2: Choose a suitable contour around which to integrate, avoiding the singularity in In z. See Figure
3.1 for my choice. Since the contour does not enclose either pole, the integral round the circuit is zero.

. E
E L]
ﬂf}
b
TaY
0 ”‘;’1' 1
Figure 3.1: Contour in complex plane for f %dz.

Step 3: Parameterise each segment of the contour with a real variable:
Onv:z=zanddz=dz. I = f% is the required integral.
On 7y, : z = ¢ and dz = 19 do.
On v3 : z =ee’ +1 and dz = 1€df. ¢ is small and we will eventually take the limit € — 0.
On v4 : z =1t and dz = udt, t real.

Step 4: Evaluate each contribution.



On v :

o 2= In(e”? +1) ,, B 2 In(e +1)
| =i AT da—/o R

Now Inz = In|z| +1argz = £ In|z|? + 1arg z and |e*® + 1|> = 2+ 2cos 6, so

in@
In(e" +1) = £ In(2 + 2 cos @) +1tan™" (%)

Now use the trigonometric identity

0 sin 6 1—cos@
tan — = — Fq.3.1
an2 1+ cosf sin 6 4

to obtain

1
In(e? +1) = 3 In(2+2cosf) + —

Incidentally, Figure 3.2 shows an elegant geometrical proof of the above trig identity, using the theorem
that the angle subtended at the centre of a circle is twice the angle subtended at the circumference.

e a ,f”f? ‘\\\\
/ e / HJIQ\ \\1
'(.-"{ /// /{,- | \\ \\.\
[ sin@
[ <0 i N\
-1! 0 cos6

e P

Figure 3.2: Geometrical proof of a half angle trig. identity

Also
e’ 11

2011 e? e 2cosf

/_1/21n(2+2c0s9 do — / I
72_4 0 cos 6 4cos€ 72

Collecting this together




On v;3 :

-z 1 20 1
/ = lim % eet? do
vs €20 ) e2e?W 4 2ieet

~% In(ee’® +141)

=1 ————~df
30 0 —iee? 4 2
“3In(1
:/ n( +Z)d9
0 2
1 s -3
=—(=In2411— do
2 <2 n +z4>/0
2
/=——ln2—zﬂ—
v 8 16
On 74
lim/o In(at + 1) Zdt_/l %Zln(t2+1)+tan‘1tdt [
e=0 fi_, —t2+1 ) 1— 2 g

Step 5: Equate real and imaginary parts to zero, since the integral round the total contour is zero. The
real parts are

o0 i Ltan=1¢
I- dd — —1n2 ——dt =0
/0 4cos b g +/0 1—1¢2

In this, if we can show that the contributions from -y and 4 respectively are equal and cancel, we have
established that I = £ 1n2, the required result. In fact this equality of integrals can be shown using the

substitution £ = tan g. Together with the trigonometric identity Eq. 3.1 above we find

g 1=t dt 1(1+t2)d9
COSU = = — .
1+t2 7 2
Hence
TTn o9 I=¢ tan=1¢ [ 1+ #2 2 1=¢ tan—1¢
lim 0 = lim an + dt = lim wn ot Eq.3.2
n—=0 J,  4cosf e—0 /g 2 1—1¢2) (1+1¢2) e=0 J, 1—¢2

I have reintroduced the limiting process here because the integrals diverge. (It would be possible to obtain
a Cauchy principal value if the limits were symmetric about m/2 or 1 respectively, since the divergence
towards +oo on the lesser side would be balanced by the divergence towards —oc on the greater side.
But at 7/2 or 1 itself the integral diverges.)

Accepting this cancellation between 2 and 74 we may conclude from the real part of § %dz that
the Putnam competition integral evaluates to g In2. Q.E.D.

3.2 Other integrals resulting from the above contour integration
With the substitution z = u/a we readily obtain the more general result

“In(z + a) s 5
/O mdx = % 111(20, ), a 7é 0.
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) “In(z + a) "n(z + 1) 7
since /0 wd$ = /0 QEQ——de -+ Z lna.

Considering now the imaginary parts, the contributions from the four segments of the contour add as

follows: . ) ) )
0+1/2 1n(2+2c0s9)d‘9 s 1/ In(t +1)dt=0
0 0

4 cos 6 16 2 1— 2

It is sensible to see how the integrals contributed by <, and 74 will combine, so I will again use the
substitution ¢ = tang to convert the integral df to an integral dt:

1 [%1n(2 + 2cosf) 1t 1—)] [(1+¢ 2.dt
S 22T g == [ W|2+2
4/0 st % 4/0 n[+ 1+ |\1-2)\1+2
1/1 4 dt
= _ In | —— | =

1 1 2
In2
:/ n dt—l/ 1n(1+t)dt
1Y), 1o

This is one of those remarkable examples where, individually, each of these integrals diverges but their
difference is finite. The first, in fact, is In2 limy_,, tanh~'t. The second is identical to the contribution

from ~4. Adding these gives
1 1 2 2
In2 In(1+t¢
/ n2 / (L +#%) ™
o 1—12 o 1—1¢2 16

Using the properties of logs these can be recombined into

dt = ——— = —0-61685. Eq.3.3

/1 In[2 (1 +¢2)] 2
. 1- 16

which is an addition to our collection of integrals. I have confirmed this result by numerical integration.
This can be put into two other tidy forms. First make the substitution 2/(1+t?) = u,1—t?> = 2—2/u,dt =

—du/(tu?):
"m[3(1+)] M In(l/u) (—du)  [? Inu s
/0 21—t2 dt_/2 2—2/u <tu—2)_/1 2(u—1)\/2u—u2du__ﬁ.

Now let u = 1+ z, 2u — u® = 1 — 22 to obtain

1 2
In(z + 1) v
——dr = — . Eq.3.4
0 x\/l—xQx 8 g3

A trigonometric form of this can be obtained by the further substitution z = sin6:

/2 In(1 + sin @ 2
/ Md&:%ﬂ-m?. Eq.3.5
0

sinf

That concludes my evaluation of integrals arising from the imaginary part of the Putnam integral.



4. Other integrals of logarithms with rational functions given in text books
I have found these books helpful on the techniques of complex integration, and they contain an interesting
collection of integrals involving In z.

4.1 Murray Spiegel : ‘Theory and Problems of Complex Variables’ in Schaum Outline Series. (My copy
is the 1964 edition.) In Chapter 7 page 187 Spiegel does

o] 2
/ h’l($2—+1)d$:ﬂ'ln2
0 X +].

as a fully worked example. Similarly on page 193 he does the pair

* (Inz)? 3 <]
/ (Inz) d:z::ﬂ— , / ne dxr = 0.
0 0

2 +1 8 2 +1

Note how these two arise from the real and imaginary parts of a complex expression. There are further
log integrals set as exercises on page 198, questions 87, 88, 91 and 102. These read:

o] _ 2
/ oz V2 erase
0 $4+1 ].6

* (Inz)? 3132
/0 e == 055445

*  Inz T
T dr=—- = —0-785398
/0 2 +12" 771

The last answer is mine — Spiegel gets a different answer which does not agree with numerical integration

and I am convinced is incorrect. | )
/ @ 1) ;1. 4603619
0 e + 1
This is similar to the Putnam challenge integral, except with infinity as the upper limit. The numerical
value here again is mine — Spiegel’s answer of %w In 2 is incorrect. I derive this result in full in §5. Finally
Spiegel gives (Q.102)
0 if |r| <1

T 2 B
/0 In(r® —2rcosf + 1)do = {wlnrQ if r > 1

From this he deduces that

% 2 T
/ lnsinxdxz/ Incoszdr = ——=1n2 .
0 0 2

4.2 A.S. Holland: ‘Complex Function Theory’ 1980. On page 191 Holland does in full the interesting case

> Inz 1 b
—  _dr = —In(a® +b*)tan"! [ — b > 0. Eq.4.1
/0 (x +a)?+ b2 T 9 n(a” +b°) tan a > e
The particular case of a = —1,b = 1 sheds some light on integrals on the Putnam integrand with different

limits. Holland’s formula gives

o Inz 3 * In(u+1)
/0 2 —op 2t T g /_1 Wyl
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where I have used the substitution x = w4+ 1. This is precisely 3 times the value of the Putnam integral,
whose limits are 0 to 1. Recall from §3.1 the numerical value of 1-4603619 when the limits are 0 to co.

4.3 Alan Jeftrey: ‘Complex Analysis and Applications’ 1992. He works in detail the example
* Inz 1
———dr = —1Inb
/0 TR T
which is Holland’s case with a = 0, though he uses a different contour.

4.4 E. T. Copson : ‘Introduction to Theory of Functions of a Complex Variable’ Cambridge Univ. Press,
1935. On page 154 he asks the reader to show that

o) 2 3
/ (Inx) dre™
o 1422 8

and on page 155 sets an exercise to show the pair
/OO Inz d s /°° dx ™
—_—Qr = —— —_— =,
o (1+22)? 4 o (1+2z%2)2 4

4.5 G. N. Watson : ‘Complex Integration and Cauchy’s Theorem’ Cambridge Univ. Press, 1914. An
early textbook by a master of the subject, but not many log integrals are quoted.

4.6 T. M. MacRobert: ‘Functions of a Complex Variable’ 3rd edition, MacMillan, 1947. A good section on
techniques of contour integration with several examples worked in detail and many challenging questions
set as exercises, including showing that:

* Inzx
——dx=0. Eq.4.2
| gt 0420

This is solved as a fully worked example by Spiegel (page 194) and is a special case of the integrals above
done by Holland and by Jeffrey, with a = 0,b = 1. Note that since 22 + 1 > 0 and Inz changes sign at
x = 1, this must mean that

1 oo

1 1

—/ et =/ e = 0915965504 ... Fq.4.2b
0 1

the numerical value being mine (see footnote). T discuss this integral in §5 below. MacRobert also quotes
the result, derived in full by Spiegel, that

&) 2 o]
/ In(z +1)dx=/ 1n(x+1/x)dx=7rln2
o  zT2+1 0 z?+1

and the more complicated result

/°° (Inz)? 1673
5 dz .
0o z24z+1 813

I have used four numerical and algebraic software packages to evaluate integrals by quadrature and to check algebra. They

are Reduce 3.7, Macsyma, Maxima 5.13 (which is the open source freeware version of Macsyma), and Mathematica 5.
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4.7 I. G. Gradshteyn and I. W. Ryzhik : ‘Tables of Integrals, Series and Products’ Translated by Alan
Jeftrey, Academic Press 1965. This classic volume of collected integrals contains loads of further cases.
The Putnam problem is given in §4.291.8, page 555. At 4.291.9 they quote the Putnam integrand with
limits 0 to oo and give the value 7 In2 + G where G is Catalan’s constant, 0-915965594 . ... This agrees
with my value of 1-4603619 obtained by numerical integration, as quoted in §4.1. In §5.3 I rise to the
challenge of deriving this result in the context of discussing Catalan’s constant, which occurs in other
integrals involving the logarithm.

In their book, §4.311 and 4.312, Gradshteyn and Ryzhik cite seven intriguing integrals involving In(z3+1).
Here are five of them:

ool 3 _ .3 4
/ (@ —a%) , _ AnV3 BqA3a
0 x a
*® In(z3 + 1) 2m * 11—z 2
————dr=—1In3 In(z® +1 dr = — =2 Eq.4.3b
/0 22 —gr1 BT /0 n(e” 1) g de = g7 @2om e
® In(z® + 1) 7 72 * zln(z3 + 1) 2
——dr=—=In3 — — ——Fdx = | — Eq.4.3d
/0 o T \/gn 9 /0 o z=mv3In3+ 9 q.4.3d, e

They give no clue as to how these results were arrived at, and their two references are also obscure.
One is to a much older table of integrals compiled by Bierens de Haan and published, in French, in
Amsterdam in 1867 (admittedly it was republished in the USA in 1956). This was probably the first
attempt to compile all known integrals. But Bierens de Haan does not explain how he obtained these
results, nor is there any help from the book of commentary and corrections made on de Haan’s tables
by C. F. Lindman, published in Sweden in 1891, and reprinted by Stechert, N.Y., 1944. (Lindman is
incorrectly referenced as C. E. Lindeman in Gradshteyn and Ryzhik’s book.) I find it thought provoking
to realise how much effort was put into developing the integral calculus by 19th century mathematicians.
However, their techniques are not set out so, in a journey of rediscovery, in §10.4 I rederive the last two
of these, and indeed extend to [~ In(z? + 1)/(z? + a?) dz for p = 3 and greater.

4.8 Paul Koosis : ‘The Logarithmic Integral’ ( in two volumes). CUP. 1988. No 12 in Cambridge Studies
in Advanced Mathematics. 1 found this book in the university library and it looked very promising since it
discusses integrals of In F'(t)/(t2 +1) dt. Tts first few lines state “On making the substitution ¢ = tan(6/2)
and then putting F(t) = P(6), the expression

1 [®°InF L[
;/_oo ;——I—(tl)dt goes over into oy In P(6)do.”

—T

This seems like a clever simplification of the Putnam-type integrals. However, I have not found it to be
of much practical value since the substitution turns the argument of the logarithm into a complicated
trigonometric function with singularities buried inside it. Unfortunately, the first two lines were about as
much of the book as I could understand! It is a dense, highly erudite, research level book on mathematical
analysis by an expert steeped in the subject. Moreover, as far as I could discern, not one specific integral
is evaluated in the whole of volume 1. I must leave this book to the more informed student.
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5. Catalan’s constant G and related series and integrals

* Inz

z2+1
According to page 807 of the authoritative ‘Handbook of Mathematical Functions’ by Abramowitz and
Stegun, Pub. Dover, Catalan’s constant is defined by the alternating sum of reciprocal odd squares:

5.1 Catalan’s constant and dz

1 1 1
G=1- 32 + = m +...=0-915965594177221dots. Eq.5.1

In this section I show that this is the value of floo a};‘—fldx.

For z > 1 use the binomial theorem and the substitution u = 1/z to write

S BNS IPRS SRS SRS S
w2+1  z2(14 %) a2 2 g4 g6 T

> Inz ®[lnz Inz Inz
S 0= e a4
1 oz +1 1 T T T
This series is uniformly convergent for 1/ > 1, this condition being necessary for term by term integration
of an infinite series. Even though the binomial expansion is valid strictly only for 1/x > 1, the above

series is valid at the limit z = 1 because In1 = 0. Fortunately each term can be integrated by parts using
u=Inz,dv=x""dz:

Hence

lnxd _ -1 Ing + 1
" x_(n—l):l:”—1 -
Hence | )
nze
—dr = ——— FEq.5.2
[ = a0

and Catalan’s constant follows immediately. A glance back at Eq. 4.2b will remind the reader that
1 Ing _

5.2 Some other integrals evaluating to G

We can use the above result together with Holland’s general formula, Eq. 4.1, to evaluate two other log

integrals to augment our collection. In Eq. 4.1 put a = b = 1 and make the substitution z = u — 1,

(z +1)2 4+ 1 =u? + 1. This gives

/ In(u=1) .~ T119 — 0. 2721983,
1 uZ +1 8

Make the further substitution u = 1/w, du = —1/w?.dw to obtain

OIn(+—1)— Iln(: -1 ! —w) — ! -
/ n (- —1) —dw :/ n (- )dwz/ In(1 — w) lnwdw =/ In(1 w)dw—i—G,
1 0 0 0

L+1 w? 1+ w? 1+ w? 1+ w?

the value G coming from Eq. 4.2b. With a change of variable back to x we arrive at

1 _
/ m(iix)da; —"Tho_qg = —0- 643767,
o r2+1 8
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a result confirmed by numerical integration. This can be added directly to the Putnam integral to obtain,
as a bonus,

1 2
/ hl(lzif’f)dxzﬁln2—(}=—0'371569-
o x2+1 4

Finally, in trying to determine a quite separate integral by contour integration (which failed to yield the
desired result! — see footnote. ) I did by accident find that

1 -1

t

/ M T =G,
0 i

5.3 Log integrals and series related to the Riemann Zeta function
Abramowitz and Stegun, page 69, give these two integrals:

1 2 1 2
/ Inz dr = T and / Inz dr = - .
o 1—=z 6 o 1+ 12

We can evaluate these by expanding the denominators as binomial series, as was done in §5.1, then
integrating term by term between 0 and 1 — e, then taking the limit ¢ — 0. The relevant binomial
expansion is

IFz)t=1dxz+2>+2°+2* +2° 4+

Now use fol z"Inzdr = —1/(n + 1)? (obtained by integrating by parts) to find

1 2
Inz 1 1 1 T

_ de =14 — 4+ — 4+ — 1 ...—((2) =
/01—955C tetate T (2=

1 2
Inz 1 1 1 T
an /0 1+x:1: 224-32 42+ n(2) 9

Here ((z) is the Riemann zeta function and n(x) the corresponding alternating series, as defined by
Abramowitz and Stegun.

Over the range of integration 0 to 1 this method of series expansion can be applied to many integrands
of the form In(z)/(polynomial in x). Moreover, the transformation v = 1/z allows related integrals from
1 to oo to be obtained. Four examples are

1 ) 0
1 1 1,1 1 —1)n
_/ — dx:/ R Y (3(7)2:0-951518
0 1

23 +1 23+ 1 277 102 — (3n+1)
1 0o b
zlnz Inz 1 1 1 (=)™
3 de — dr= — — — 4 ——...= 5" _(.9290436
/0 FEN /1 Br1rT 52+82 ;(3n+2)2

1 0 e’}
Inz zlnzx 1
dr = dr = —— =1-121713.
/0$3—1$ /1 21 ;(3n+1)2

f In(z+1)

] dz around a rectangle with corners at 1, R = % in the limit R — oo.
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1,2 ) 0 n+1 2
z?Inz Inz 1 1 1 (-1) s

_ i — o= — -t =S T 91385
/0 B 1 /1 z(z3+1) TTETRETR (3n)? 108

n=1
Note in passing that
* Ingz [ (-1~ (=1)" 272
— dz = - =0-951518 — 0-220436 = 0 - 7310818 = —-.
/0 Bl ;[(377,“)2 (3n + 2)2 27
1 1
5.4 Evaluation of / % dx
o T¢4+1

Separate this into two integrals over the ranges 0 to 1, and 1 to oo respectively:

dz.

/°° n(@+1) /1 ln($+1)dw+ > {lnz+In(1+ 1)}
o r2+1 o z2+1 1 z2+1

We already have the first integral on the right; it is the Putnam integral, making its reappearance, with
value § In2. The first term within the second integral was shown in §5.1 to be Catalan’s constant. For
the remaining term let 1/z = u, do = —du/u?, just as we did above. Then

* 1n(1 1 0 _ 1
/ n(2+ I)da::/ ln(ll—i—u) ( ciu) :/ ln(21+u)du
1 X +]. 1 u_2+1 u 0 U +1

which is the Putnam integral again. Hence

<1
/ n(;13+1)dx:
o z+1

In2+G. Eq.5.3

N

5.5 Another example of symmetry in the integrand
We have seen above the effect of the transformation v = 1/z on the integration and we can use it to
prove that some integrals are zero. Consider, for example,

* In(z? +1
/Mdrﬁ
0o z?—qr+1

for some positive integer p and real constant q. Make the transformation to wu;

/0 In(% +1) —du_/°° ln(l—i—up)—plnudu
~Jo u? —qu+1

O

1

SO / #du must equal 0
0o u?—qu-+1

for all real values of q. Admittedly (and regrettably!) this tells us nothing about the integral involving
In(z? + 1), which was merely a device to obtain the above zero value. The result can be obtained from
Holland’s general result Eq. 3 with a = —¢/2 and a? + b® = 1.
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6. The ‘half annulus’ and ‘key hole’ contours for integrating log functions

6.1 A theorem involving In zf(—z)
I developed this and related theorems from a note in Copson’s book, page 154 which reads

f(2z) is a rational function with no poles on the real axis and is such that zf(z)
tends to zero as z — oo and also as z — 0. By integrating Inzf(—z) round an
appropriate contour, prove that

/OO Inz[f(z) + f(—2)]dz + m/oo f(x)dx Eq.6.1
0 0

is equal to 272 times the sum of residues of Inzf(—z) at its poles in the upper
half plane. The result is of particular value when f(z) is an odd function, as it
enables us to evaluate [;° f(z)dz.

Here is my proof of this, followed in the next sub-section by an example of its application.

Consider evaluating § In zf(—z)dz around the half-annulus contour in Figure 6.1 below. The indentation
at the origin circumvents the singularity in In z at zero. The conditions

a) f(z) has no poles on the real axis

b) zf(z) = 0 on o

c) zf(z) = 0 on 4
mean that only y; and ~y3 contribute in the limits € -+ 0, R — o0. On 3 2 = —t so

lim / (=) f(H)d(—t) = /0 (It 4 0m) ().

e—=0,R—o0 Jp

Combine this with f’n and apply the Residue Theorem to get Copson’s result.

Figure 6.1: Half-annulus contour for evaluating ¢ Inzf(—z)dz

For f(z) even there is no advantage in using this formula over straightforward contour integration of
In(x)f(x). As Copson notes, when f(z) is odd, the real term on the left of Eq. 6.1 is zero and we have
Js° f(z)dz in terms of a sum of residues. In practice, however, the three conditions on f(z) turn out
to be quite restrictive, limiting f(z) mainly to a rational function of polynomials, with the degree of
the denominator strictly more than 1 greater than that of the numerator (more on this in §6.5 below).
In choosing a worthwhile example to illustrate the technique, I have avoided the many simple rational
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functions which can be integrated in closed form. I have therefore chosen f(z) = z/(z® + 1) to show the
power of the technique, and this is evaluated in the next sub-section.

x
26 +1
Let us take f(z) to be the odd function z/(x® + 1). This has no singularity on the real axis, and both
limits of 22/(2% + 1) as z — 0, z — oo are zero as required. f(—z) gives rise to six poles of order 1. We
want the residues of

ox
6.2 An example of Copson’s theorem for an odd function: / dx
0

(—=2)Inz
[(=2)° +1]

within the half-annulus contour, at z = 1, z = (+v/3 +14)/2. In case the reader is not familiar with
evaluating residues, in the Schaum book on ‘Theory and Problems of Complex Variables’, page 172
Murray Spiegel gives the following formula for calculating the residue at a pole of order n positioned at
z=a:

) 1 dk—l k

lim mm[('z —a)" f(2)]

and with £ = 1 this reduces to lim (z — a) f(2).

zZ—ra

The reader probably knows that this is also obtained (for a pole of order 1) by ‘differentiating the
denominator’:

z
%(z6 +1)

z=a

The required residue at 2 is

. —zlnz
lim 254zt — 23— 21 ~(n)/6 = —em/12.

Calculation of the other two residues is tedious but straightforward: at e’/ we have 7(—+/3 +1)/72 and
at e®7/% 571(v/3 +1)/72. Adding these we get simply 7v/3/18 so Copson’s formula immediately gives

/ z d—”—\/?_’zo-60460,
0

HS+1% T g

a result confirmed by numerical integration.

6.3 An extension of Copson’s theorem to §(Inz)%f(—z)dz
We again use the half-annulus contour in Figure ??. On v, z = Re* and the contribution from this
segment is

/ In®(Re') f(—Re'®) 1Re* .do
0

which — 0 as R — oo provided zf(z) — 0. This is the same condition required for convergence in §6.1.
We also require that € f(g) — 0 on 74. Given these conditions only v; and 73 contribute.

/ im0 e /R In2(—t) £ (1) (—dt) = /0 (It 4 o) £ (1) dt

15



Adding the contribution from y; we conclude that

T2 2 [* h = n’z. f(—z
/Oln (t)[f(t)+f(—t)]dt—7r/0 f(t)dt-|-2m/0 W) f()dt =20 Y WPef(—2)  Fg62

residues

Note that for an odd function f(z) this still has non-zero real and imaginary parts which, when equated
to the sum over residues, will give two integrals, one of which will be fooo f(xz)dz. Thus Eq. 6.2 gives
more information at the expense of evaluating more complicated residues. Also note that in Eq. 6.1 we
integrate Inz f(—z) around a contour and obtain an integral of f(z) along the real axis, and in Eq. 6.2
we integrate In? z f(—z) around a contour and obtain an integral of Inz f(z) along the real axis. The
exponent of In" z is reduced by one. This happens because of cancellation on the paths v; and ;. We
may suppose that this pattern continues with higher powers of Inz, and indeed in his book (see §4.6)

MacRobert obtains [ m(;:l_ﬁ)jldx from § z(;ﬁj)fl dz around the key hole contour of Figure 6.2 (which

we consider in §6.6). This cancellation between contour segments and the consequent reduction in the
exponent of In z is a distinctive feature of complex integration with the logarithm.

_r
6 +1
We build on the example in §6.2 by again taking f(z) to be x/(z% + 1). We now want the residues of

6.4 Example of the 7{1112 zf(—2z)dz formula for an odd function : / dx
0

—zIln?2
[(=2)% +1]

within the half-annulus contour. These can be obtained from the residues in §6.2 by multiplying each by
its respective value of In z at the pole. We find

at z = 1 residue is 72/24,

at €7/6 residue is —72(1 +1/3)/432.

at e7/6 residue is 2572 (—1 4 11/3) /432.
The sum of these three residues is 72(—1 + 13v/3)/54. Now equate real and imaginary parts to obtain
immediately from the imaginary part

* zlnz 2
/0 mdx— i 0- 182770,

and, from the real part,

o] 2
/ T d:z:zw\/g.
0

6 +1 9

I have confirmed the former integral using quadrature with Macsyma, and the latter value is precisely
the one obtained in §6.2 using Copson’s formula. On balance, the ‘log squared’” method of this present
section seems to yield more results for a given level of effort.

6.5 Integrals involving branch points of multivalued functions: a warning!

The three conditions a), b), ¢) placed upon f(z) in Copson’s theory, §6.1, are met by the function
¥z /(z? + 1). Moreover, if we think of x as real, this is an odd function; for instance /—8 = —2. Let us
evaluate this in two ways using Eq. 6.2. With the substitution 2 = »? it can be transformed into a ratio

of polynomials: in fact
00 ZL'1/3 o] ’U,3
——dr = ———du=1-81
/0 21 7 3/0 B U 81380,
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oo ,.1/3 o .3
/ wdngf wnu 1. 64455,
0 1'2"1‘1 0 U6+1

the values being obtained by numerical quadrature. So these pairs of integrals, over = and u respectively,
should be entirely equivalent and we may expect their use within either Eq. 6.1 or Eq. 6.2 to give the
same answer. The version in w is similar to the example in §6.4, having the same denominator, and f(u)

is certainly odd. I have worked through Eq. 6 with ¢ % du and find

%) 3 oo .3 2
3/ w3 9/ winu ™
0 0

ub +1 3 ub +1 6’

in full agreement with the numerical values. Note, in passing, the coincidence that

*u oyl ™3 * ulnu > uwdlnu 72
L du= [ =T e L TR L
o ub+1 o ub+1 9 o ub+1 o ub+1 54

But what if we attempt the z version of the integral, which has the multi-valued factor z'/3? The
denominator of (—z)'/31n? z/[(—z)% + 1] gives rise to a single pole of order 1 within the half annulus
contour, at z = 1. The formula for the residue at this simple (order 1) pole at z = 7, in Spiegel’s form
quoted in §6.2, is lim,_,,(z — 1) f(2). This gives a residue of

CNL/3 102
(- 221n () _ 2y vssg,
but which of the three roots (—2)/3 = (e37/2)1/3 are we to choose? These roots are 1, e’™/¢ and e'17*/6,
As an ‘experiment’, let us calculate the residue assuming each in turn is correct:

Root r1 =1 gives residue —72/8.

Root 5 = €"™/6 gives residue 72[1 — 1v/3]/16.

Root r3 = e!1™/6 gives residue w2[1 + 11/3]/16.
In fact none of these gives the correct answer when placed in Eq. 6.2 ! For example r1, having zero
imaginary part, implies that fooo 2'/3 /(2% + 1)dz = 0. What can be going on?

The explanation seems to be that ¢/z/(z? + 1) does not behave as a straightforward odd function when
taken into the complex plane. For z on the negative real axis, at —8 say, the principal value of the cube
root is not —2 but 2¢*™/3 = 14-14/3. Consequently the f(z)+ f(—z) in the first term of Eq. 6.2 is not zero
and the method fails. The method would appear to be restricted to rational functions of polynomials,
where the degree of the numerator is at least 2 less than the degree of the denominator.

6.6 Integrals of § Inz f(z)dz round a ‘key hole’ contour

The material in this and the next sub-sections is equivalent to Eqs. 5 and 6 except that the contour is
now that in Figure 6.2 below. Because of its shape, it is called a ‘key hole’ contour. Note that here we
are integrating Inz f(z) and not Inz f(—z). As previously in §6 we place the three conditions that a)
f(2) has no poles on the real axis, b) zf(z) — 0 as R — oo on 72, and ¢) zf(z) — 0 as ¢ — 0 on 4.

Then only ; and «y3 contribute. Our parameterisation on ~ys is z = te?™ so
vy Y Y
£ [e0)
/ . lim / In(te2™) f(te2™) 2™t = — / lInt -+ 2] £ (1)t
vs e—=0,R—o00 Jp 0
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Figure 6.2 : Key hole contour with branch cut for In z along the real axis.

and the Int f(t) cancels with f,yl, leaving

—zm/OOO F(t) dt = flnzf(z) dz.

Then -
/ f@t)dt=—-= Z Inz f(z) Eq.6.3
0

residues

where R denotes the real part, and the sum is over all residues within the key hole contour. As a check
on calculations, the imaginary part should be zero.

As an example of using Eq. 6.3, let f(x) = 1/(2°41). This has three simple poles at z = —1, *™/3, ¢>7/3,
As a warning to the unwary, note that in this type of work €>7/3 is not the same as e~*"/ even though
they may plot at the same point on the Argand diagram. In the key hole contour the branch cut for
In z is along the real axis so each pole must be approached solely by anticlockwise travel from the upper
side of the real axis at ;. The correct evaluation of the residues are respectively «7/3, 7(v/3 —1)/18 and
—5m(v/3 +14)/18, and their sum is —27v/3/9. There is no imaginary part, as required. Hence from Eq.
6.3

=1-2092,

/°° dw _2m/3
0

3+ 1 v 9

a value checked by numerical quadrature using Macsyma.

6.7 Integrals of § In” z f(2) dz round the ‘key hole’ contour
We impose the same conditions a), b), ¢) on f(z) and integrate In zf(z) round the key hole.

L [e’e] , ) _ oon2 B - oon 9 oo
/73. /O lInt + 2mi]? £(£) dt /O In® ¢ f(t)dt 41/0 1tf(t)dt+47r/0 (1) dt
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= 2T Z In® 2 f(2)

residues

The first term, in In?, exactly cancels the contribution from ~v1 and we obtain the quite useful (in this
context!) result:

o 1
/ Intf(t)dt=—-R > I’z f(2), Eq.6.4a
0 2 residues
e 1
/ frdt=—-—S > W’z f(2). Eq.6.4b
0 2m residues

As an example, let’s again take f(z) = 1/(z3 + 1). The three residues are:
residue at z = —1 is 72/3,
residue at e™/3 is w2(1 + 1v/3) /54,
residue at e>7/3 is 2572 (1 — 11/3) /54,

with sum 472(1 —13+/3)/27. We obtain

* Inzx 272 > 1 2V/3
P = — _0.73108 da: =
/0 Bl T o7 ’ /0 Br1 T g

the latter result being precisely that obtained using Eq. 6.3. Recall that we obtained this in §5.2. Note
here again the phenomenon we saw in §6.1, §6.3 and §6.6 whereby there is cancellation between segments
of the contours of the terms involving the highest power of In z, with consequent reduction of the exponent
in Inz in the final real integral.

1
(z* + at)
I have evaluated the following integrals involving the rational function 1/(z* + a*) and the logarithm:

6.8 Integrals involving the logarithm and

€T =
zt + gt 403

* Ilnz V2 2
/0 ey (2“‘1“— 7)

/°° In?x ™2 <ﬁ
0

—_—dr = —
%+ at as 8

/°° 1 ™2

—7rlna+2ln2a>

The first was determined by integrating 1/(z* + a*) around the semi-annulus contour of Figure 3, and
the other two by integrating In? z/(z* + a*) around the same contour. This follows the hint given in the
Schaum book by Murray Spiegel, page 198, Q 87. Note that by integrating In(+z)/(z* + a*), rather
than In?(—2)/(z* + a*) as in §6.4, the In® terms do not cancel. This approach can be used to determine
similar integrals involving In?  x (rational function).

6.9 Integrals of for general integer p > 2

z? + aP

Finally I use the key-hole contour to evaluate the general case

/OO 1 d itive int > 9
——dx p a positive integer > 2.
o (P 4 aP)
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According to Eq. 6.4 this is —R Y (residues of -2 within key-hole contour). The poles are at

zP+aP

z =aexpim(2k +1)/p] for k=0,1,...,p — 1. The residue at aexp[ar(2k +1)/p] is

Ina+ 22k +1) e/
14 _ -2 /p
S lae BT = et [lna + — ) " (2k + 1)]

so the sum over all residues is

1

p—
<lna+z—> e m”“’—l—z Zke_’%’r/”] .
k=0

The first sum is a geometric series whose value is zero. The second is an arithmetico-geometric progression

whose sum 1is .
— 2
X —12kw/p _ p _ b SlIl( D )
Z ke -~ 5y = o |17 2 ‘
P 1—e2m/p 2 1 — cos(ZF)

e—m/p P 1 —/p
—o2km/ il _e
pap - ze 12km /p <]na+2p(2k + 1)) par-1

The sum over all the residues is therefore

- /p sin(<&
e—m [1 — z#] .
)

paP—1 1 — cos(

In multiplying this out one finds that the imaginary part is zero on account of a trigonometric identity
— this is a reassuring sign that the calculation is correct. Finally, the value of the integral is

< 1 ™ 2sin(7)
/ dx = - ) for p a positive integer > 2.
0

xP + aP paP~t |1 — cos(%7r

I have checked the following numerical values for a = 1 against numerical quadrature:

p=2: I = 15707963 p=3: 213 —1.2091996
_ . /3 1 _ ) 27 sin(Z .
p=4: TV = 1-1107207 p=5 : eos(z) ] = L 0689593
_ - _ _ . \/§7r sin(8 _

[e.e] [e.e] 1
7. The integrals / dr and / 1T g
0 0

3 — z3—1

These are an interesting pair of integrals because of the deformations of the contour needed to avoid the
singularities. We use the ‘trick’ in log integration of taking the exponent of Inz to be one higher than
that in the real integral required. Thus we will be integrating ¢ In® z/(2* — 1)dz.

As a place to start, let us try to use the key hole contour in Figure 6.2. We first need to identify the
singularities of the integrand within the whole complex plane. The infinite singularity in Inz at z = 0
is circumvented by the segment 74. The roots of 23 — 1 = 0 are at z = 1, €2™/3 = (=1 4 1/3)/2,
edm/3 = (=1 — 11/3) /2 and the latter two clearly give rise to simple poles inside the key hole contour.
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But what of z = 1?7 This is also where Inz — 0. This point is on the real axis and so lies within the
branch cut of In z, so how will the contour segments y; and y3 be affected?

On ~;: Here Inz is real. To analyse its behaviour near z = 1 write u = z — 1 and expand into the well

known Taylor series

2 u3 u4

u
ln(u—i—l)_u—7—i-?_z_|_...7

valid for —1 < u < 1. Also write 23 — 1 = v® — 3u? 4+ 3u = 3u(1 + u + u?/3) and expand by the binomial

theorem: ) 5
1 2 2 2
(Z?’—l)_lzgll—(u—ku?)—F(u—i—%) —(u—#%) +--

o F_1 (1—udt--) w 2 Y au? bt o+
pp— — u — — e — — au U
z22—1  3u 3 3

where au? + bu® + - - denotes a series in positive powers of u. This function is smooth and continuous,
and is zero at z = 1. We have shown that this point is a removable singularity, and consequently no
change is required to the key hole contour along segment ;.

On v3: Here z can be parameterised as te?>™, ¢ real, meaning that In®z = In®t — 4n® + 4mInt. The
term within (In” z)/(2% — 1) involving In®¢ is a removable singularity and so would occasion no change
in contour, but the other two terms create a pole of order 1. The contour must therefore be indented at
z = 1 on the segment ~ys; call this semicircular indent 5 and let it have radius € as in Figure 7.1 below.

Now that the singularities and the contour are established, we can carry out a straightforward evaluation
of the residues at the two poles, and the contributions on each segment. The residues are found from the
‘differentiate the denominator’ rule, by which we evaluate In® z/(322) at each pole in turn. At e2™*/3 the
residue is 272(1 — 21/3)/27 and at e*™*/3 the residue is 87%(1 + 1v/3) /27, giving a sum of 272(5 + 13v/3)
and a value of the loop integral of 473(—3v/3 + 5)/27, from the residue theorem.

In? 2
—gdz

Figure 7.1 : Key hole contour modified at z =1 for ¢
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The contributions from the segments of the contour are :
On 7; : 2=t and in the limits ¢ — 0, R — oo f’n = [ In*¢/(t3 — 1)dt

On 75 : In the limit R — oo this contribution is zero.

On 73 : As described above, z = te?™. In the limits e — 0, R — oo

€ 2722 o] 2, 2
/ :/ ln(;e ) PN _/ (In"¢ 347r + 4m) gt
s Rt£1 0 —1 0,641 3 —1

The first term in this integral will exactly cancel the contribution from ~;.

On v, : z=c¢ee? so

0 1.2( 16 27

l (3

/ = lim % ee'? dh = lim (Ine + 10)*1ce? dh = 0
ya e—0 o €€ -1 e=0 Jo

This result depends on the limit elne — 0 as ¢ — 0, bearing in mind that Ine itself — —oo.
This is equivalent to e — 1 as € — 0.

On s : z=e> +ee¥ so

2 2
. T In”(e?™ + ge*?) 0 1 T —4n? o Amh
= lim 7 5 5.0 +3.4 16€ df = — lim 7 lee dd = —— .
v €70 Jon 3eet? + 3ece?? +ede e—=0 [ 3eet 3

Adding these contributions, equating them to the loop integral, and taking real and imaginary parts gives
our required result

* 1 ™3 > Inz 472
dr = — "2 = _0.60460 de =~ = 1.46216.
/0 B_1 9 ’ /0 21T o7

I have checked both values by numerical quadrature. (Recall that we obtained the equivalent integral
from 0 to 1 in §5.2.) In summary, the interest in this semi-infinite integral is the removable singularity
on one branch of the real axis but not the other, and the demonstration of how integrating ¢ In? zf (2)dz
round the contour yields fooo In zf (z)dz owing to cancellation of terms in In® zf ().

In closing this section, note that the indefinite integral of 1/(z3 — 1) can be obtained in closed form as
follows. First split it into partial fractions:

11 2z + 1 1
B3—1 3xz—1) 6(x2+z+1) 2@2+z+1)

Next complete the square on 22 +z + 1 = (z + %)2 + %, then integrate to obtain

dz .
/ B sn(z —1) - gIn(e® +z +1) - % tan~! (%) + arbitrary constant.
However this breaks down at £ = 1 and so cannot be used to evaluate the integral fooo.
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8. A table of integrals generalising the Putnam integral
This section and the next deal with a generalisation of the Putnam integral to

* In(z? 4+ 1)
——=d Eq.8.1
/0 22+1 ¢

where p is either a positive integer or a fraction. In this section I give a table of values of these integrals,
and in look at factorisation of P 4+ 1 as one possible approach to breaking down this complicated integral
into a sum of simpler, more tractable integrals. In §9 I attempt to evaluate some of these integrals for
various values of p ; the challenge is to make p as general as possible.

ox
8.1 Table of values of/ hq(:z;”_—}—l)

0 2 +1
Using Macsyma and Reduce, two powerful numerical and symbolic maths packages, I have numerically
evaluated integrals of the type of Eq. 8.1 for increasing values of the real parameter p. First, note the
form of the integrand, illustrated in Figure 8.1. As p increases the contribution from 0 < z < 1 decreases
towards zero, and the contribution from = > 1 steadily increases, with the peak moving closer to z =1
from above.

0-4
=
0-3
4
0-2 |
3
’ ‘HH"'H-_
.".I s ., E -Hﬁn"h-\-
01} e o =
|I 1}5-\- — _‘________———_
0 2 3 4 5 6
Figure 8.1 : Graphs of lng::l) for various values of p

Where I have been able to identify analytical, closed form values of the integral I, I have listed these too
in the table over page. G is Catalan’s constant, 0 - 9159656. The difference of the last two values in the
table is 0 - 916. A graph of the integral I against p is given in Figure 8.2.

I have calculated the high values of p in Table 8.1 to show that I(p) appears to be asymptotic to a straight
line. The line through the points at p = 40 and 41 has equation I = 0.916p 4 0.019 and we may suspect
that, for very large values of p the asymptote would be I = Gp , where G is Catalan’s constant. To see
how this arises, differentiate the integrand with respect to p :

dl zP Inx

dp — (zP + 1) (a2 + 1)
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Table 8.1

Numerical and algebraic values of generalised Putnam integral between limits 0 to oc

D I lng:_"il)dx formula
0 1-088793 ZIn2=rlnv?2
z 1-198674
1 1-460362 ZIn2 + G
3 1-798631
2 2-177586 7In2
2 2-580109
3 2-997304
z 3-424170
4 3-857710 71n(2 + v/2)
2 4-296026
5 4-737871
4 5-182389
6 5-628978 7In6
3 6-077200
7 6-526732
8 7428812 TIn(4+vV2+2V2+ V2 +2V2 — V?2)
9 8-333848
10 9-241000 7In(10 + 4v/5)
12 11-059596 mln (4v/6 + 4v3 +5V2+10)
14 12-881929 see Eq. 18
16 14-706627 see Eq. 14
20 18-360314 see Eq. 16
30 27-5063
32 29-336572 see Eq. 15
40 36-659 see Eq. 16
41 37575
40
30 A
I(p)
20
10
0 . .
0 10 20 30 p 40

Figure 8.2: Numerical values of the integral I(p) as a function of p
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Now take the limit p — oo for the two cases x < 1 and = > 1. For z < 1,I(p) — 0 as P — 0. This can
be seen from the trend in Figure 8.1 which illustrates how below # = 1 the integrand makes negligible
contribution for large p. For z > 1 the limit is (Inz)/(z? + 1). Consequently the limiting value of dI/dp
is given by Eq. 4.2b, with value G.

Just a note about the cases where p is a fraction, p = k/2, say, where k an odd integer. The substitution

u? = z makes b2 .
/ ln(x2 +1) dr — 2/ uln(u® + 1) g
0 z2+1 0 ut +1

I confess now that, throughout this investigation, I have made no progress with these, and I suspect that
they do not evaluate in closed form.

8.2 Table of factors of P + 1

One way to approach integrals involving In(z? + 1) for integer p is to factorise 2 + 1 and use the additive
property of logarithms to split the original integral into a sum of simpler integrals which, hopefully, can
be evaluated. Factorisation can always be achieved over the complex numbers. For complex z, 2P + 1
has p roots equally spaced around the unit circle in the complex plane. Motivated by this fact, in §9 1
evaluate § In(z + e™/*) /(2% + 1)dz around a suitable contour and show how the results for various values
of k allow us to build up some of the real integrals of the type in Eq. 9.

The factorisation of P 4+ 1 over the reals is interesting in its own right and so is demonstrated in Table
8.2 below. These factorisations follow various patterns depending on how p itself factorises, and I have
used this property to separate the table into various categories.

1) If p = 2" for some integer n, z? is positive and so, by the factor-remainder theorem, z? + 1 is
irreducible over the integers, and hence over the rationals.

2) 22" + 1 is a factor whenever p = 4xinteger. We see this for p = 12, 20, 24, 36, 48.

3) If p # 2™ and p is odd, by the Factor theorem x 4+ 1 must be a factor.

4) Similarly, if p # 2" and p is even, 22 + 1 is a factor. In general if p has a prime factor P, the
polynomial has a factor =¥ + 1.

5) For p an odd prime, the pattern is always (z + 1)(zP~t —2P=2 + ... + 22 —x + 1),

6) Where p is twice an odd prime the pattern is (22 + 1)(z2®=1 — z2(=2) 4 ... 4 g% — 22 4 1).

7) Where p is composite, a frequent factor is the descending sequence % — z7 + 1 for some integer j.

Table 8.2 : Factorisations of z? 4+ 1 for p an integer
Irreducible polynomials for p = 2"
x2+1,x4+1 ,x8+1,x16+1,x32+1 , etc..
p and odd prime : (z + 1) is factor
(*+1) = @ —z+1)(z+1)
(2°+1) = @' —2*+22 -2+ 1) (z+1)
(2" +1) = @ -2 +2' -2+ -2+ 1) (z+1)

(' +1) = @0 -2+ 22—+ D) (4 1)
(3713—|-1) — (.’1712—.’1711+.’I710"-+:172—:L’+1)($+1)
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(' +1) = (@ -2+ 42—+ Dz +1)
(¥ +1) = ¥ -2+ 422 -2+ D) (z+1)
(B +1) = @2 -2+ 422 —24+ 1D (z+1)
(P +1) = @B —22"+2%.. . 422 24+ 1D)(z+1)

p = 2% (odd prime) : (z? + 1) is factor
(°+1) = (z* =22 +1)(2®> + 1)
(#%+1) = B -2+t —22+1)(2%+1)
@441) = @2 =20 42— 2t — 22+ 1)@+ 1)
@2 +1) = @ —a® 420 42t — 224 1)z +1)
(% 4+1) = @ —22+2%° 42 — 22+ 1)(2? + 1)

p = 3% (odd prime) : (23 + 1) is factor
(2°+1) = @ -2+ D)(@* —z+1)(z+1)
(% 4+1) = P +a" -2 2 — B4+ )@ 2P+ 22—+ D@ -z +1)(z+1)
(221 +1) = (242" -2 -2 42—t — P a4 D@ -2ttt - 2Pt -2+ )@~z + D) (2 +1)
(" +1) = (¥ -2+ 1) -2+ 1) (@2 —z+ 1) (z + 1)

(@33 +1) = (220 + 210 — 17 — 16 4y gl4 1 518 11 10 50 4 7

+ab 2t~ e+ )@ -2 a2 - 2 2 D)~ D) (1)

p = 5x (odd prime): (z° + 1) is factor, with descending alternating sequence
(P +1) = @ -2 + 20 -2+ D@ -+ -z D) (24 1)
(@ 4 1) = (@2 22— 10— 18 _ g7 16 4 M | 13 g 12 0l L 00 8 T 6

—P e+ D)@ -t - — s+ )t - 42—+ D)z + 1)

p=4m: (z2" + 1) is factor, with alternating descending sequence x> — x7 + 1
(2 +1) = (B -2 +1)(=*+1)

(2 +1) = ¥ -2+ 1)(=*+1)
(22 +1) = 2 -2+ 1)+ 1)
(*®+1) = *2 -2+ 1) (2 +1)
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p composite: a few examples, showing alternating descending sequences
(¥ +1) = (22— 25+ 1)(z* — 2>+ 1)(2® + 1)

(B +1) = @ -2~ + 1) (2 +1)
(230 4+1) = @+ 210 — 28 — 2% + 22+ 1)x
(28 — 2%+ 2* — 2?2 + 1) (z* — 2% + 1)(2® + 1)
(2 +1) = @ -2+ 1)@ -2+ D) (a* + 1)
(2 4+1) =@ +222 -2 20 4212 — 2% — 2% 4+ 22 4 1)x
(2 =20 428 — 2% 42 — 2?2 + 1) (z* — 22+ 1)(2® + 1)

In the next section I show a method for evaluating some integrals involving the factors in the above

.. .. P
factorisations, and hence determining [, lng(cﬁ :11)

dx for several values of integer p.

In(z 4 e'™/*)

d
2241 i

9. Contour integrals of the form ?{

i [k
9.1 Contour integration of ¢ %dz

Prompted by the factorisation of 2? 4+ 1 over the complex numbers z, I propose in this section to explore
contour integrals of the form

dz

7{ In(z + e™/%)
22 +1
where k is either an integer or a simple fraction. We hope that suitable choices of k and the contour

might lead to values for the real integrals Eq. 8.1, tabulated in §8.2. In fact I will show how this choice
leads to closed form expressions for real integrals of the form

 n(¢in
/ n(t*" +1) gt
0 t2+1

and for a class of log(descending polynomial) forms where the degree of the polynomial is either 2 or a
multiple of 4. In the following sections, §10 to 12, I attempt with limited success to generalise to the
logarithm of other irreducible polynomials.

Let’s start by looking at the singular points in the integrand. Clearly the denominator is zero at z = =+
and gives rise to two simple poles. The logarithm tends to —oc as z — —e*™/* and the branch cut must
run from this point to infinity in some direction. Unless k = 1, % or some other value which places z
on the real axis, the singularity in the logarithm and the branch cut can be kept strictly in the lower
half plane. Therefore we can use the simple, non-indented half circle contour in Figure 9.1 There are two
ways in which we can regard the segment along the real axis. First, since we are interested in integrals
from 0 to +o00, we shall consider it as made of two segments: v; from 0 to +o0o and 3 from —oo to 0.
Later, in §9.6, I consider it as one segment parameterised by a single real variable, and so obtain related

integrals over the domain —oo to +o0.
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T3 1

> >
R 0 R
- : In(z+e'"/¥)
Figure 9.1: Contour used to evaluate ¢ %d

On ~; parameterise z as t, t real. Then
In|t + ™52 = In[(t + /%) (t + e7™/*)] = In[t* + 1 + 2t cos Z],

so the contribution to the loop integral from ~; is

-1 sin T
1/00 In(#* 4+ 14 2t cos §) di+ 1/00 tan (_Lt-i-cos %) ol Fe9.1a
2 Jo 241 0 t2+1 o
On 73 z = —t and the contribution is
-1 sin 1[,
l/oo ln(t2+l—2tcos%) dt—}—z/oo tan (—t-i—cos%) dt qulb
2 /o 2 +1 0 t2+1 e

The contribution from <y, is zero in the limit R — oco. Now note that when we add the contributions
from ~y; and +s3, their real parts combine into

o In[(t? + 1)% — 4¢2
/ n[(#? +1)2 cos? z] "
0

t24+1

Only the pole at z = 1 contributes to the loop integral so its value, from the residue theorem, is

1 wr [k 1+sinZ
7{: QWZM—WIH[2+2SIH 7]+ am tan™ (#)
21 cos

I concentrate on the real parts since I am interested mainly in integrals involving logarithms, rather than
the arctangent ones.

< In|(#? + 1)% — 4¢2
/ a[(t? + 1)° — 447 cos” k]dt:wln[2+2sin%] Eq.9.2
0

241
This is the key equation for the remainder of the analysis in this section. It is important (though only
in this context!) to note that the argument of the logarithm is a fourth degree polynomial; without

modification the method cannot give integrals over odd powered polynomials, which Would include all
odd primes. It will be convenient to introduce the shorthand notation (#2 + 1)? — 4¢2 cos? T=F(k).
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1 [k
9.2 Some evaluations of ?{ m dz

22+ 1
Here are some evaluations of Eq. 9.2 for various values of k. These early results hint at patterns which
I will explore more systematically in §8.3 and 8.4. All numerical values have been checked by numerical

quadrature using Macsyma and Reduce.

Case k =2
Since cos Z = 0 and sinZ = 1, and In(#? 4+ 1)? = 21In(#? + 1) we obtain

2 2
o0 2
0 2+ 1

This integral is derived in full as a worked example by Murray Spiegel, §3.1. It is one of the frequent
factors identified in §7.2 and we will use it in §8.2 as a building block in forming integrals involving
In(z?" + 1). Note how this degree 2 polynomial has been obtained from the degree 4 polynomial in Eq.
9.2 by virtue of the additive property of the logarithm.

Case k=3
Here cos % = % and sin% = ‘/75 We arrive at
[e%¢) 1 4 2 1
/ % dt = wIn(2 + V/3) = 4 - 137345.
0

Precisely the same value is obtained if & is set to 3/2.

Case k=4
Here cos % = sin% = % We find

/oo W) b @ 4 Va).

t2+1
Case k =6
Here cos § = @ and sin § = %, the reverse of £ = 3. We find

oo 4 _ 42
[P s e
; 2 +1

The argument of the logarithm is one of the descending alternating sequences identified as a frequent
factor of z? + 1 in §8.2. We will use it as a building block in §9.2. We can use the additive property of
the logarithm to combine the integrals for £ = 3 and k£ = 6 into

©In(t® +tt+1
/ In(” + ¢ +1) t2+-|— 1+ ) dt = 71n[3(2 + V/3)] = 7 - 588746. Eq.9.3
0

Casesk=8andk=§
I am taking these two cases together because I wish to combine their integrals using the additive property
of logs. For k = 8, cos? 5= # and for k = %, 0032%" = %. The case k = 8 makes the argument of
the logarithm equal to t* + 1 — /2% whilst k& = % makes the argument to be t* 4+ 14 v/2¢2. We thus have
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another ‘difference of two squares’ with the combined argument (¢* + 1) — 2t* = #® 4+ 1, giving another
integral of the form considered in §7. The value of the integral can be expressed in terms of trigonometric
functions or in terms of surds (sometimes called ‘algebraic irrationalities’ ):

< In(t® 4 1)
/0 Wdt mIn[ 4(1+sinZ) (1 +sin37) ]

—aln(4+vV2 +2V2+V2+2V2-V2) = 7428812 Eq.9.4

Cases k=5 and k = 2

This pair of values can be used in a combination following the method above applied to the pair k = 8
and k = %. cos T = 1tV5 8 — 1-V5

£ = =52 and cos - = ==>>. Together these give the argument of the logarithm to be
the neat sequence t® + t% +t* + 2 + 1. The sines of 7/5 and 37/5 can be expressed as surds, but only in
the ungainly forms

31ng—c0891’—75=— %(5—\/5 and sm%’r—cosf—oz%\/%(5+\/§

The result is

©In(t® +t5 4+t 2+ 1
/ n{" + "+t 7+ )dt:wln[4+\/5+\/§(\/m+ 5-V5) | =7-907406.
0

t2+1

Cases k =10 and k = %
We use the facts that cos T 5 = sin 32 (1 +V5)/4 and cos 22 =sin & = (1 — /5)/4. The calculation is

an exact parallel of the pair k = 5 k =3 5 and we obtain the complementary result

dt = wln(5 +2V5) = 7- 063414,

/°° In(t® — 6 4+ ¢4 — 2 + 1)
0 2+1

This is another alternating descending sequence, so can be used as a building block following the factori-
sations in §8.2.

Cases k =12 and k = Q

w143 _ o B T _ —14+vV3 _ i
oS {3 = S5 = Sin gy and cos 2Z 12 =5 = sm Combmmg this pair in the same manner as above

for k=8 and k = § we obtain & — #* + 1 as the argument of the logarithm. This is another alternating
descending sequence. From it

® In(t® —tt+1
/ n(2—+) dt = 71n(5 + 2v/6) = 7 - 201886.
0 2+1

This value is subtly similar to that in cases & = 10, k = 10/3 above so I am tempted to combine it with
Eq. 9.3 from the case £k = 6 and obtain the true but probably totally useless result

/°° In(t'° +1° +1)
0

o dt=mIn [3(4v6 4+ 5V3 + 6v2 +10)| = 14- 790624.
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On a less frivolous note, if we include with k = 12 and k£ = 12 the intermediate value of k = 3 we obtain
the factorisation
2 4+1= [(t2 +1)% — 4t%cos? & ][(t2 +1)2 — 4t%cos? 3“ [(t2 +1)2 — 4t%cos? 5—”]
= (t* = V32 + 1) (t* + 1)(t4 + V32 +1)

from which

OO] t12 1
/ Il(iﬂd mln[ 2](1 +sin %) (1 +sin3%) (1 +sin32) |
0

t2+1 Eq.9.5

= 7wln( 4V6 +4V3 +5V2+10 ) = 11 - 0595963.

Cases k = 16 and related values
By now a pattern is emerging for integrals involving 4" + 1 which derives from a particular factorisation
of this function. Eqgs. 9.4 and 9.5 gave this factorisation for n = 2 and n = 3 respectively, and the
equivalent factorisation for n = 4 is

10+ 1 = [(£? +1)% — 4t%cos? Z[(¢* + 1)® — 4t2cos? 3Z][(#* + 1) — 4t%cos? 3Z][(¢* + 1)* — 4t°cos? 1]

Substituting this into Eq. 10.2 gives

® In(t16 + 1 i
/0 —(tQ+1)dt= In[ 2*(1 +sin Z) (1 +sin3Z) (1 +sin5Z) (1 + sin IZ)] Eq.9.6.

This pattern continues with higher values of n. The highest value for which I have checked the analytical
result with numerical quadrature is n = 8, for which

o] ln(t32 + 1 _ i
/0 e ) dt =7In[ 28(1 +sin %) (1 +sin3Z) -+ (1+sin28E)] = 29.336572 Eq.9.7,

the product being over odd values of % from m =1 to m = 2n — 1.

9.3 General results for In(t*" + 1)

In general
2n—1

pn = [t2 1)2 — 442 2(@)}
+ H (t*+1) cos” (-] »

m=1,m odd
The factorisation works because of the pairwise simplifications for all m, n, A, B

, [(Zn—m)w

in ] =1 and

&)
cos” [— | + cos
4n

cos [Ar] cos [Bm] 4 cos[(2n — A)r] cos [(2n — B)w| = cos [(B — A)7]

together with the identity

H COS (%) =92n—1,



The resulting integral is

2n—1

/Ooom(g%l)dtzmn 2 T [1+sin(%)] : Eq.9.8

m=1,m odd

As explained in §8.2 the significance of this explicit formula is that 2" + 1 is an irreducible factor of
2P 4+ 1 for many values of integer p.

9.4 General results for descending sequence polynomials

The cases of K =6 and k = 10 in §9.2 give a clue to the more general way of obtaining a factorisation of
2201 — g2(=2) L. 4 g% 22 4 1 for p odd. When p is an odd prime, these are factors in 22 + 1 (see
§8.2). Using the notation F (k) = (t* 4+ 1)% — 4¢* cos® £ introduced with Eq. 10, the family of alternating
descending series polynomials commences

F(& )=t -1 +1
FR)F(R) =18 -0 +t* — 1> +1
FHFAHF(A) =t -0+ 88 — 5 ¢ — 2 +1
FRVFERF(R)F(E) =t —tM 4+t — "0 46 — 10 4t — 7 41
FB)F(R)F(Z)F(2)F(2) =t =t 41" — . 8 =10 4 ¢* — 17 + 1
FEVF(R)F(R)VF(R)F(B)F(2) =t =12 440 — - =18+t — 2 + 1.

The related integral is

00 ln(t4n _ t4n—2 + t4n—4 L t2 + 1) 2n—1 -
dt =mln 2" 1+si . Eq9.9
/0 2 +1 mln H [ +Sln<4n+2)] q

m=1,m odd

Note in passing that shifting the values of k£ to even denominators gives the corresponding non-alternating
descending series. For example (see case k =5 in §9.2)

[y

FRYF(R) =8+t +t* + 2 +1

F(S)F()F(R) = "2 4410 448 415 + ¢ + 2 + 1.

These factorise into products of other descending series —
Bttt 1=t -+ -+ )@+ 2 1)

e 4204t St 1= -t -+ )@+ S et P+ 2 a4 1)

From §8.2 we recognise one factor on the right as a factor of #7 +1 = (z+1) (2?71 — 2P 2 4. .. 4 22—z +1)
for p an odd prime. Unfortunately, I cannot see how to isolate this factor, and so cannot see how this
approach could yield integrals involving z? + 1 for p an odd prime. For these cases a different approach
to the integration seems necessary. Similarly I have been unable to use this method to find integrals
involving descending series of the type 2/ — z7 4+ 1 for any integer other than j = 2" (e.g. case k = 12
in §8.2). These particular cases are of no additional value since they occur only in the factorisation of
J7 In(t*™ + 1) /(¢* 4 1) dt, for which I have given a formula in Eq. 9.8.
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9.5 Results for Putnam-type integrals involving In(x? + 1), formed by combining factors

Here I collect together the results from above which can be used, together with the factorisations in §8.2,
to evaluate a few integrals for further values of p.

oo]n(t-i-l) T Ooln(t2+1)

— dt==-In2+G gt = o lng.

/0 2+ 1 getE /0 g 7ln

Fn(t -2 +1) © In(t® —° + 1 — 42 + 1)
————dt =7l g1 )

/0 t2+1 mhnd -, /0 21 7In(5 + 2v/5)
 n(#12 — 10 448 — 48 44t — 42 4 1 o . 3m I
/0 2 +1) dt = mIn[ 8(1 +sin %) (14 sin 3%) (1 + sin 2Z)]

Combining pairs of these we obtain

* In(t5 +1
/0 %dtzw(ln2+ln3)=7rln6.

* In(t10 4 1)

dt = m1n[ 16(1 + sin &) (1 + sin 3Z) (1 + sin 2] Eq.9.10

/°° In(t14 + 1)
0 2 +1

and similarly for p = 2x(odd prime). This completes the table in §8.1 as far as this method allows.

9.6 Putnam-type integrals over [0, 1] derived from integrals over [0, c0)

Divide the limits of integration into two parts, one from 0 to 1 and the other from 1 to oo in the same
way as was done in discussing Catalan’s constant, G, in §5. If p in any in real number > 1 (it does not
have to be an integer)

° In(x? + 1) Uin(z? +1) * InzP © In(1+ L)
T E D) e = [ 2O d DET e g,
/0 22+l /0 22+ 1 $+/1 352+1$+/1 241

The second integral on the right is pG. The third integral on the right is identical to the first on the
right, as can be seen by making the substitution 1/z = u, dv = —du/u?,

/°° ln(12+ %p)dw:/o ln(ll—i-up) <—ciu> :/1 1n(12+up)du
1 T +]. 1 'u,_2+1 u 0 u +1

We have established for all real p > 1 that

* In(z? + 1) Yn(z? 4 1)
————dx =2 —_— . Eq.9.11
/0 211 dx /0 1 dz + pG q.9

The integral on the right is the Putman challenge problem with = generalised to x?.

Table 9.1 below is derived from Table 8.1, §8.1, by using the above formula.

33



Table 9.1: Values of the generalised Putnam integral between limits 0 to 1

P fol %dz formula

0 0-544396 TIn2=In2tan"(1)
i 0-370346

1 0-272198 Z1n2
3 0-212341

2 0-172827 In2-G
s 0-145098

3 0-124704 Eq. 12.7
z 0-109146

4 0-096924 IIn(2+v2) - 2G
2 0-087091

5 0-079022
4 0-072290

6 0-066592 IIn6— 3G
2 0-061712

7 0-057487

8 0-050544 Zln(4+v2+2vV2+V2+2V2-V2) - 4G

9 0-045080

10 0-040672 Z1n(10 4+ 4V/5) — 5G

12 0-034005 Zln (4V6+4V3+5V2+10 ) — 6G

14 0-029206 see Eq. 9.9

16 0-025589 see Eq. 9.6

20 0-020503 Eq. 9.8 withn =5

9.7 Some related integrals over domain —oo — 400

Refer back to §9.1 and this time consider the contour segment along the real axis, previously denoted by
v1 and 73, as a single segment parameterised by ¢ with —oo < t < 400. Then Eq. 9.1 a and b together
with Eq 9.2 give

/00 In(t* + 2t cos T +1)

N o dt = mIn(2 + 2sin )

Selected simple values of k give the results on the next page.
We would really like [In(#? +¢+1)/(¢? 4+ 1)dt from 0 to oo because it is a factor in the integral of

In(z® + 1), but for now we will have to be content with the much less interesting and less useful integral
from —oo to 4-o00.
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(00r7r: /_o;m(%t#—i_l)dt=2/_(:%dtzwln2
5 or 37” : /_C: —lnt(§2++11) dt =mln2
k={ %or 2. /_o;m(li;t%”dtzwln@—i-\/g)
Z or 3¢ . /_o;ln(tzzzﬁt—i_l)dtzﬂln@-!-ﬁ)
\%01‘%”: /_Zln(tzjéﬁt—i_l)dt:wlnii

10. Integrals of rational functions with In(z3 + 1) which have primitives

In §2 T pondered the fact that most integrals do not have a closed form solution. So far in this paper I
have managed to evaluate definite integrals of In(z? + 1)/(z? + 1) where p is a positive integer equal to:

a) lor2

b) any integer multiple of 4 (4, 8, 12, 16, 20, 24, etc.)

c¢) twice an odd prime (6, 10, 14, 22, 26, etc.)
All other cases remain open for further investigation. While my target has been to find analytical answers
for © ln(g? 4 1

/0 % dx for p an odd prime
(assuming they exist!), T have been forced to recognise that so many integrals involving In(z? 4 1) times
any rational function are intractable. I have therefore settled for trying to find even a few integrals for
the lowest case p = 3. There is some hope because in §4.7 quotes four from Gradshteyn and Ryzhik’s
book, and in §11 I show how to evaluate some of these.
10.1 Search for primitives of integrals of rational functions and In(z3 + 1)
It is natural to start any problem in integration by looking for primitives — that is, by performing the
indefinite integration. I have used the symbolic maths software Mathematica, Macsyma and Reduce to
search a sample of integrands composed of a rational function f(z)/g, (z) multiplied by In(z> + 1). Here
the denominator g,(z) is indexed by an integer, n, related to its degree as explained below. The least
complicated primitive I came across is

/ z? In(z3 + 1) 1+1In (2% +1)
—dx _ . 7
(2 +1)2 3 (x34+1)

I found very few primitives in cases where the denominator has low degree, but for n greater than a
threshold value, some sequences over n of g, (x) did have primitives — composed of complicated sums of
rational functions, inverse tangents and logarithms. Here are some examples:

zcln(x3+1)
a) /de

has a primitive for all the positive integer values of n > 2 which I tried (but n = 1 has no primitive). As
an example with n = 2

3 3
/xln(x +1) dx:hl(x +1) _§1n($2+1)+£tan_l<

2x—1>_3 . In(z*+1
(22 + 1) 4 8 2

/3 N
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There are also primitives for the sequences

In (.’E3 + 1)
_ > 2.
b) / @rir dz for n >

:Eln(ac3—|-1)
_— > 3.
c) / @+1" dx for n > 3

2 1n (23 + 1
d)/wdxfornzzl.
(z+1)

On the other hand none of the four sequences

/ln(x3+1) i /:132 In (2% +1)

(2 +1)" @+ 0
1 3+1 1 3+1
/ m(@®+1) / eho(e®+1)
(3 +1) (3 +1)

seems to have a primitive for any positive integer n. I have not investigated why some sequences of
functions do have primitives, but it seems likely that the integral for n can be expressed in terms of the
integral for n — 1, in a chain down to some least value of n.

The challenge before us is to evaluated (in algebraic form) at least one integral involving In(z3 + 1) times
a rational function for which a primitive does not exist.

10.2 A ‘limiting thin wedge contour’ method for § In(2* + 1)F(z) dz for F(z) a rational function

The ‘method’ I describe in this section arose from an attempt to evaluate integrals of this type. The
argument of the logarithm has three zeros, where 23> = —1 and at each of these three points the logarithm
is negatively infinite in value and, moreover, any contour encircling one of these branch points must jump
in value by 27:. Hence it is necessary to choose a contour which avoids these points and the three branch
cuts which radiate from them. This led me to consider a wedge contour along the real axis, extending to
+00 but not extending far enough into the upper half plane to encroach on the branch cut from z = /3,

With this motivation in mind, choose the wedge contour shown in Figure 10.1 below. The segment y; runs
along the positive = axis to R, which is taken to its limit at infinity. - is a small arc which contributes
nothing to the integral as R — oo provided — and (as in §6) this is crucial — that z F'(z) — 0 as z — o0.
The segment 3 returns to the origin to form a wedge which is narrow enough for z3 + 1 to avoid the
and z = e

/3 5umr/3

branch cuts emanating from z = e That means that the wedge angle [ is less that

/3.

> R
Figure 10.1: Thin wedge contour avoiding branch cuts
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Regard  as a parameter and develop the real and imaginary parts of the contour integral as a Taylor
series in 3, retaining only terms up to, say, 82. The loop value of the real and imaginary parts will each
be zero (or a constant in the unusual case that there is a pole on the positive real axis.) Since the power
series evaluates to zero, or the same constant, for all small values of 3, the coefficients of the power series
must themselves be zero. By isolating the coefficient of each power of § in turn we find relationships
between integrals over rational functions and logarithms. In particular, the contributions to coefficients
of 4%, coming from the segments 71 and ~y3 will in most cases cancel. The coefficients of 3% provide the
most useful information. They are formed from two or more terms, some of which contain unknown
integrals over logarithms but others consist only of rational functions; for these the definite integral can
be found by techniques such as those of Copson in §6. I illustrate it by an example.

Let ,
In(z°+1)
Fz)=—g577"

This has no singularities along the positive real axis. Along segment v; F(z) =1In(t3 +1)/(t> +1). The
contribution from 5 is zero. Along the returning segment of the wedge, 3, z = te'?, dz = e'? dt. Taking
account of the direction of travel around the closed contour, the loop integral is
o0
f P(2) dz = / [F(t) — P F(te'®)] dt = 0
0
Now expand this as a Taylor series in 8 about S = 0. This is most conveniently done using a symbolic
maths package such as Macsyma, Maxima or Mathematica, or by differentiation with respect to f.
However, we only want the first two terms and these can be obtained ‘by hand’ using the limiting

approximations
sinff =, cosfp— 1, tan"*(kpB) = k3

for a constant k. Also, expand the denominator by the binomial theorem. Explicitly the integrand on -3

1S
e? In (e +1) 34t3 1 34t3
= 1 In(#® +1 1-—
t3e3f +1 (+25){n(t+)+2<t3+1)}t3+1{ Zt3+1}
In (3 + 1) N ﬁ(2t3—1) In (3 + 1) — 343
STy (* +1)2

Q

to terms in B. Tt is clear that the term in B° exactly cancels the integrand along 7; and that the
coefficient of 3 is purely imaginary. From this

(263 —1) In (£ +1) 43
dt =3 ———dt. Eq.10.1
/0 (t3+1)2 /0 (3 +1)2 e

Now the right hand side can be evaluated by the methods of §6 and its value is 27r\/§/ 9 =1-20920 so,
in so far as it is useful, we have obtained the value of the integral involving In(¢*> + 1) on the left.

The result, however, is somewhat disappointing because a) the integrand on the left of Eq. 10.1 has two
terms so is too complicated and particular to be of much wider interest, b) the integral has a primitive,
which is
-1 (2t=1
ln(t2—t+1)+tan (¢g)+1n(t+1) t t1n (£ +1)
6 V3 3 tB3+1 3 +1
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Interestingly neither of its two constituent terms has a primitive. The degree of the numerator on the
left side of Eq. 10.1 can be reduced by changing the variable in the integral with the ¢3 factor by the
substitution ¢ = 1/u, dt = —du/u?. This gives

oo 43 3 o 3 oC
/ t3In (¢3 + 1) dt:/ tln (¢ +1) dt—3/ (tlnt 5
0 0 0

(t3 + 1)2 (t3 + 1)2 3+ 1)2

and again the second integral on the right can be evaluated by the key-hole contour method on §6.7. Its
value is

*  tlnt 23 2n?
e dt=——-—+ —— = —0-1593726 .
/0 (t3 +1)2 27 Bl
Putting this together with Eq. 10.1 gives
% (2t —1) In (3 +1) 4n?  2mV/3
dt = — — = 0-252964. Eq.10.2
/0 B +1)2 27 9 410

This integral does not have a primitive.

Ideally, we would like to separate the two terms which make up this integral and evaluate each constituent
separately. To this end T have tried other rational functions in the integrand. For example F(z) =
zIn (23 +1)/(2® + 1) takes us on a journey of calculation round the thin wedge contour similar to the
above, and the substitution ¢ = 1/u again reduces the degree of one term —

o 4 n (3 4+ 1 ©In(t3+1 00
/ Mdtz/ Mdt—?)/ (hlitdt
0 0 0

(BB +1)2 (B3 +1)2 512"

We encounter

3 +1)2 27 81 3 4 1)2 27 7

/°° Int onV3  An? /°° 4 47v/3
(7 — and (
0 0

but, after some cancellation, the journey arrives at exactly the result of Eq. 10.2. A little progress
towards expressing Eq. E in terms of more elementary integrals can be achieved by splitting the rational
factor in the integrand into partial fractions in the form

2% — 1 t—3 —t* + 3t + 5t

CE R CE R S

The degree of the terms in #* and #3 can be reduced, as above, by the substitution ¢+ = 1/u, and so Eq.
10.2 can be recast in the form

® tIn(t3 + 1) ® In(t3 4+ 1) < In(t3 + 1) 27
—dt—3 ——dt+3 ———dt=—(7m—V3) =0-984046. FEq.10.3
/0 B+1 /0 B O /0 (t* +1)2 g (M= V3) 7

The first two integrals were quoted in §4.7, Eq. 4.3d, 4.3e from Gradshteyn and Ryzhik’s book, and are
derived in detail in §12. Substituting for these, we can solve for

* In(t3 + 1) 2
—dt = — 1 - — =0-19429318 .
/0 GCESIE o (3\/§ ogd — 7 \/5)
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10.3 Critique of the ‘limiting thin wedge’ method

This method is most readily applied using symbolic maths software such as Maxima or Mathematica
since the algorithm is as follows

Step 1: Define a rational function F(z) = f(z)/g(z) such that lim,_,., z F(z) =0
Step 2: Define the complex integrand H(z) = F(z) In(z? 4 1) for some integer p (here 3)

Step 3; construct the function L(t) = H(t) — e"® H(te*?) which, when integrated from 0 to oo, is the
value of the loop integral round the wedge.

Step 4: Expand L(t) as a Taylor series in 8 about 8 = 0 and take the coefficient of 3.

Step 5: Equate the real and imaginary parts of this coefficient respectively to zero. The general pattern
of outcome is that

f(z)In(z? 4+ 1) ) , /°° Az )ln|xp+1\ C(x)
— <~ dz gives rise to
9(2) & o Bl D(z)

where A, B, C and D are polynomials.

Step 6: Evaluate the integral of R(z) = C(z)/D(x) by the methods of §6.6 and/or §6.7.

The limitations of the method are that :

a) the denominator B(z) is generally a complicated polynomial. Moreover, unless there are fortuitous
cancellations, it is always a perfect square and as such cannot give the denominator 22+ 1 required
for Putnam-type integrals. However, there may be some mileage in splitting the A/B into partial
fractions.

b) the polynomial factor A(z) in the numerator implies a sum of terms which cannot readily be
separated.

c) it is difficult to predict and hence control the resulting real integral. There may be an art in
selecting the rational function F'(z) suitable for creating the desired real integral.

We can gain a deeper insight into the constitution of the polynomials A, B, C and D by considering the
nature of the Taylor series expansion. To be quite general I use the notation that the complex integrand
on the contour is H(z) = f(z)Inh(z)/g(z) (where h(z) means 2>+ 1), the Taylor expansion about 3 = 0
on the v segment is

2 82H
W& L.

8 _ B OH o°H
e"H(t,p) =e [H(t 0)+ﬁ ‘B ) e -

The contribution from segment ~y; is precisely H (¢,0), which cancels the first term above as f — 0, while
the coefficient of S is

= [(gf' = f9' +f9)

B=0
where ’ denotes differentiation with respect to 5. Since this coefficient is zero, we obtain the equation of

integrals
o0 /YT B oo £ pt
/ (fg QJ; 1fg) lnhdx:/ .
0 g 0

which accounts for A, B, C' and D, subject to cancellation of any common factors. This formula is
quite general and could in principle be used to investigate integrals involving a wide range of rational,
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trigonometric, exponential and other functions multiplied by a logarithm. However, if we restrict for the
time being our concern to h(z) = 23 + 1, then h'/h = 323/(23 + 1) as B — 0.

If we also restrict f and ¢ to be polynomials in z = te*?, it is possible to select the coefficients of
these polynomials in order to control to some limited extent the rational function which multiplies the
logarithm. T say ‘to some limited extent’ because there are only a few coefficients to specify, bearing in
mind that the degree of g must be at least 2 greater than the degree of f in order to meet the condition
for vanishing at infinity. A simple case is f = 1, g = 2z2. This leads to the equation of integrals

/ de_g/ de:2_7r:3.6276.
0 .’,E 0 $3+1 \/§

This would be a welcome novel result if the integral on the left did not have a primitive! Nevertheless, it
is correct. The result comes about purely because the upper limit of integration is infinity. The respective
integrals to any finite limit will differ, but the difference term tends to zero at infinity.

The each case integration of the rational function can be performed by the key-hole contour method of
86.6, or by finding its primitive. Regrettably, I find it impossible by this approach to create the integral
of In(z3 + 1) /(22 + 1) dz, which remains an elusive prize. Here are a few examples of equations involving
In(z3 4 1) which have been generated:

In(2® + 1 *In(z® +1 > 2
1) 7{711(2 i )dz leads to / L—de:/ 37ﬂ:dac=—7r=3'6276-
0 0

22 2 3 +1 \/§
3 ] 3 1 0 2
4 D) 4 teads to / @ +l) ), / CLA R C SRR
z(z+1) o (z+1) o (z+1)(z3+1) 9
3 (2 3 o 3
3) j{iln(z +1) dz leads to/ (2" — 1 In(z” +1) d:z::/ 3z dr = 3—7r=2-3562
22 +1 0 (22 +1)2 o (z2+1)(z%+1) 4
In(z3 + 1) ®zln(z3 +1) o 322 s
4 ———>dz leads t — L dx = dr = — 09— —0-
) fz(z2+1) o 0/0 @+12 /0 2@+ 1)(a® +1) (&3 Vg =0 637
In(z® + 1 ®In(z® +1 >
5) fn(z—:_)dzleadsto/ n(x—;_)dx:/ %dx:l:l-&%
z 0 z 0 2(x3+1) V3
3 oo (4 3 oS} 4
6) f ZGEEED G eads to / (2" ~20)In@" +1) , _ / N C PR
22 +1 0 (3 +1)2 o (3 +1)2 9
In(23 4+ 1 (223 — 1) In(2® + 1 *© 3 2
7) fwdzleadsto/ (227 = lIn(a” + )dx:/ 307 gy 23 a0
23 +1 0 (x3+1)2 o (z3+1)2 9
In(23 + 1) ©z21n(z3 + 1) * g? 1
8 ——>dz leads t —  __‘dr = — —dr = -
) ?{z(z3+1) 7 jeads 0/0 @ +12z /0 @ +1)2" 73
?{nz—i—l dzleadsto/ 4ac +11nx+1)dx=/ 37 d:1:=27“/§=1-2092
2 0 22(z® + 1)2 o (z3+1)2 9
7{ n(z dzleadsto/ (52 + 2) In(a +1)d:1:=/ 3 4= V3 o s
3 . Bt o @112 9
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I can see no a priori reason why the integrals fooo on the left, involving In(z3 + 1), should have a primitive
with respect to z, but every one of the functions above does have a primitive. Speaking heuristically, it as
if the limiting wedge contour is insensitive to the critical, essential features of those types of log integrals
which do not have a primitive. To explain this a little further, note that integrals 3), 6), 7), 9) and 10)
above have two terms in the numerator A(z). Neither of the two individual, elementary integrals defined
by this numerator has a primitive — only their sum or difference, as shown. Take 3) as an example:
numerical quadrature gives

o .2 3 o 3
/ @ D) 967674966 and / @™+ 1) 4~ 0. 32055517
o (22 +1)? o @+1)?

and neither of these has a primitive. Their difference is 2 - 3561945 = 37/4 as given above. Interestingly,

their sum is 2 - 99730483 which can be identified with the elusive Putnam-type integral fooo lniﬁijll) dz.
This happens because the partial fraction decomposition of

2 . 1 1
—— s — .
(z2 4 1)2 z24+1 (2241)2

So each of the two individual elementary integrals must have a term which cancels on subtraction —
possibly a term which can only be represented by an infinite series.

One might wonder whether the higher terms in the Taylor series of the contour integral, involving higher
derivates of the integrand, furnish extra detail. I have not found this to be the case. The second derivatives
typically involve higher powers of the denominator. For example, the second derivative of case 3) above
$In(2% +1)/(2% + 1)dz leads to the equation of integrals

dzr

/°°(x4—6x2+1)ln(:1c3+1) d$_3/°° —22% + 22° + 2° + 53
0 )y @2 —z+1D2@2+1)2(z+1)2

(2 +1)3

The right hand side, though complicated, can be evaluated by the methods on §6, but the left side has a
partial fraction in In(z3 +1)/(2z% + 1)® whose value cannot be determined. So higher terms in the Taylor
series do not seem fruitful as a way of evaluating integrals with single term, low order rational functions.
But conversely they would allow more complicated integrals such as [, In(z® + 1)/(z* + 1)*dz to be
built from known simpler ones.

 In(z? +1
11 Contour integration to evaluate / de, p =3, etc.

0 zP £ aP

11.1 Contour integration of / In(z® + 1)

] P a— dz

Here « is a real positive constant. I have chosen this function because it is a non-trivial integral involving

In(z® + 1) (it does not have a primitive) yet it is less troublesome than either the integrals of 71nz(fi:3l) or
3
In(x +21), which I tackle later.
z2+a

We first need to examine the singular points on the integrand, then determine a suitable contour. The
poles are at z = a, ae®>™/3, ae* /3, The argument of the logarithm has zeros at z = —1, €™/3 and
e®™/3_ and so these are logarithmic singularities and branch points of the logarithm. The argument of
the logarithm would jump by 27 for every turn of z° + 1 around a branch point, so we must make cuts in
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the complex plane from each of the three branch points as barriers in the path of z. We are free to choose
the direction these cuts take. Another consideration in choosing a contour is that it is most convenient if
23 4+ 1 is real on the main straight segments. The contour I have chosen is shown in Figure 11.1 below.

Figure 11.1: Contour for evaluating fooo lt(sx i:e,l)

In Figure 11.2 below I have mapped the path of 23 + 1 as z travels round the contour in Figure 11.1.
Note the extra 27 in the argument on the segments 3 and 4.

Figure 11.2: path of 23 + 1 as z travels round the contour in Figure 11.1

Now evaluate the contribution on each segment.

1. As the indentation at z = a shrinks to zero, this becomes the Cauchy principal value of the required

real integral, fooo ligtij;gl) dt
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2. Here z = Re*®. This contribution tends to zero as the radius R tends to infinity.

vs. Here z = te2™/3

argument.

. Reference to Figure 11.2 shows that the logarithm has gained an extra 27 in its

3 0 11 (43
/ In(¢®> +1) 4 2me LY N _/ In(¢° + 1) 4+ 2me (—%‘H\/Tg) gt
R

3 — g3 3 — g3
& ln(t3+1 2\/_ * In(t3 + 1) *©dt
= = dt dt —dt
2/0 o T \/_/ —a3 / 3—ad +m/0 3 — a3

where the point ¢t = a is excluded and we understand the integrals to be Cauchy principal values. The
first term will combine with the contribution from ~;.

w1 /3

V4. Z =te and the logarithm still has its extra 2ms.

1- 3
lim “ln(—t° 4+ 1) +2m /3

dt
e—=0 /g —t3 — a3

7s. Here z = te™/3 again but the logarithm has lost its extra 2ms. The direction of integration is opposite

to that on ~y4 so, on adding the contributions from 7, and ~s, the log(modulus) parts cancel and leave
1—¢ m/3 1 dt
) e
T4 V5 0 0

6. The indentation contributes —ms times the residue at z = a:
'

/ = ——2ln(a,3 +1)
e 3a

v7. z = €2™/3 4 ge? and the logarithm has its extra 27s. The contribution is

/3 In[ad + 1 — aZee(dm/34+9)) 4 oy

: 26
Eh_r)r(l) 2 /3 30286(47”/3-‘,-19) wee”” df
7r\/§ 3 w2 i 3 7T2\/§
= 6(1,2 ln(a + ].) — @ + ’l@ ln(a + 1) +1 3a2

~vs. This contribution involves the integral over 27 of lim. ¢ e(Ine + K) where K is a complex constant.
This limit is zero so s makes zero contribution to the loop integral.

The integral round the closed contour is zero by the residue theorem. Summing the real and imaginary
parts we find

< In(#3 1 2
Real: 3 / n( + dt + 7'('\/_/ 53— 3+ W\/_/ W\/_ In(a® + 1) — T _o.

t3— 63
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—V3 [~ In(t® +1) ©dt Lodt T 5 23
Imag. B) A t3—a3 dt+7T/0 W—ﬂ'/o m—@ln(a +1)+ 3@2 = 0.

If the imaginary part is multiplied by v/3 and added to the real part, several terms cancel and leave

—ad 9q2 ’

/ < dt ™3

o B

a result which agrees with that in §7 for the case a = 1. This is substituted back into either the real or
imaginary part above.

Another integral term above can be evaluated by partial fraction decomposition; for the case a = 1

1 1 1 .
/ L=t Ly l/—t 2 gy - 2, 3
0 0

B3 +1 3o t+1° 3 ), 2—t+1 3 9

while for a general (real positive) value of a

1
1 V3 1 1 V3 a—2
. dt = ) - ——In(a®—a+1)— Y2 tan
/0t3+a3 18a2+3a2n(a+) 6a2n(a a+1) 3q2 0 <a\/§>

Collecting this together we conclude that for a = 1

21 79 V3

 In(z3 + 1 272 7ln?2
/ @ +1) , _ 2 T2 gs60155 Eq.11.1a
0

and that for a general value of a

® In(z3 + 1) s 1 [a—2

These must be regarded as the Cauchy principal value of the integral through the singularity at = = a.
The integral for two other values of a is

Vs

a=2: E(7r—\/§1n3):0-3243015
47 /7

a=4: = (5-vBm(3)) =1 4447614

These agree with values obtained by numerical quadrature.

3
11.2 Contour integration of [* lnz(f +:31) dzx

This evaluation follows the approach used in §10.2 above with the difference that poles no longer lie in
the straight line segments of the contour, v; and s, but instead the pole at z = ae™/3 is aligned with
the branch cut of the logarithm. It can have one of three distinct relations to the branch cut:

a) a > 1 : the pole is enclosed by the contour,

b) a =1 : the pole is superimposed on the logarithmic singularity,

¢) a <1 : the pole lies within the branch cut.

Case b) suggests singular behaviour on the contour at z = e*/3. However, the integrand is finite

and well behaved along the real axis for all values of a, so we must expect any singularities appearing on
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the complex contour for a = 1 to cancel. We shall see that this does indeed happen, though it requires
analysis of the limiting behaviour as a — 1.

The contour I have chosen is shown in Figure 11.3 below. The diagram corresponds to a > 1.

oo In(z®+1)

Figure 11.3: contour for evaluating fo 2577

Reference to Figure 11.2 will remind the reader of how 23 + 1 travels as z travels round the contour.
The residue at the isolated pole is

In(2® + 1) evr/3 5
—52 =33 [In(a® — 1) + 1]

z=ae'"/3

from which the value of the loop integral is found from the residue theorem to be

1= (1v/3 — In(a® — 1)).

(m + V3 In(a® — 1)) + 3.3

T
3a?
Now evaluate the contribution from each segment of the contour:

1 1

v1. This gives the required real integral, f

v2. This contribution tends to zero as the radius R tends to infinity.

2m/3 | Reference to Figure 11.2 shows that the logarithm has gained an extra 27 in its argument.

0 3 o 3
In(t® + 1) 4+ 27 9.,/5 1 In(¢® 4+ 1) + 2me
\/R 3 T a3 e o/ dt —R—oo 5 /(; 3 T o3 (]. — Z\/g) dt

°°ln(t3—|-1 zx/_ < In(t3 + 1) < dt
- dt ) gt L
2/0 Ty 4T \/_/ t3—|—a3 / 3 + a3 +m/0 + a3
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As in §10.2 the first term will combine with the contribution from ~;.

4 plus 6. These can be taken together since the log(modulus) parts cancel as in §10.2 and leave

e g o
/-i—/ :27rzlirr(1) Wdt:ﬂ(—\/g-l—z)/ pr a>1
v I %o T @ 0o @°—

Clearly we cannot make the substitution a = 1; this case is considered separately later.

v5. For a # 1 the contribution round the branch point tends to zero as € — 0.

Summing the real and imaginary parts we find for ¢ > 1

3 [ In(t3+1)
Real: 5/0 In(t” +1) \/_/ t3+ 3 \/_/ a3—t3: (7T+\/_ln(a —1)).

t3 +a 3
—V3 [ In(t3 +1) dt dt 7r 5
Imag: / P dt — /0 p —7r/0 o @( 3 — In(a® —1)).

If the imaginary part is multiplied by v/3 and added to the real part, several terms cancel and leave

/OO at 23
0

tB3+a3  9a2

a result which agrees with that in §6.6 for the case ¢ = 1. This is substituted back into either the real or
imaginary part above. Using partial fractions

1
1 —-7v3 1 1 V3 a+2
 dt = Y7 n(a—1)+ ——In(a® 1) + Y7 tan~! :
/0 PERE Sz 3@ Dt gah (e tat1)+ o7 tan (m/?‘,)

Collecting this together we conclude that

® In(z® + 1) 1 fa+2
/0 B ad dx—?) 2[\/_ln(a, +a+1)+2tan o3 -7 Eq.11.2a

Though this was derived for a > 1, the final expression has no singularities for any real positive value of
a so there seems no reason to evaluate it at a = 1 or for a < 1. At @ = 1 it indeed reduces to

/°° In(z3 + 1) mln3 2
0

T
P T = NG —9 = 0 - 8960396 Eq.11.2b

in agreement with the value in Eq. 4.3 d of §4.7, quoted from Gradshteyn and Ryzhik’s compendium.
The integral for a = 2 is

%(\/5 In7 + 2tan~! (%

N——

_ Tr) — 0 - 50866744

and for a = % is
47 _
(VB (3) +2 tan~t (5) - ) = 126642473

Both these values agree with numerical quadrature.
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Whilst it is gratifying to discover that a formula, derived under a limited assumption (here that a > 1)
actually applies to many more cases, we should still give some thought as to why this happens. The case
a < 1 can be understood as follows. The pole lies in the branch cut (Figure R) and so two semicircular
indentations must be made around it, one in y4 and the other in v5. The integral round the whole loop
is zero since there are no poles inside it, but in traversing these two indentations at z = ae’™/3 one
effectively evaluates 272 times the residue at this point. Moreover, the contour is traversed in a clockwise
direction around this point, so its contribution has the opposite sign to that which it would have if the
pole were inside the contour, as when a > 1. This explains why the formula is the same whether a > 1
or a < 1, provided a > 0.

We now turn to the case a = 1. I proposed to evaluate this from first principles as a special case, in order
to show how the singularities in the various constituent terms cancel. The sum of contributions from -1,
v and 73 is

§/°°1n(t3+1)dt ﬁ z\/_/oolnt?’—i-l it 227r2\/§
2/, t3+1 t3+1 9

where I have used the value for fooo dt/(t3 + 1) from §6.6. Turning to 74, 5 and -y, we proceed as before
and the sum of contributions from 74 and ~g is

(—V3+41) i e _dt
T V), 1-e

and the integral evaluates as

1—e
. dt 1 T
611_1)1(1) ; 5 = 611_1)1(1)E<ln3—21n5+—\/§> .

On 75 z = e"™/3 4 g€ so its contribution is

—2r ln(36 ez(27r/3+9))

: 20
Eh_r,% a 3 er2r/3+0) €€ df
L [ (VB mEe) + 27 46 d9+z/_2i In(3e) + 2 4+ V30
= — lim n — — —In —
6 e—0 iz 3 6 i \/§

The real part of the loop integral contributed by -4 4+ 7v5 + 6 is

. ™3 7r\/_ 72 ™3 72

We see that the two terms in In e cancel precisely, meaning that in fact there is no singularity at z = e™/3,

oo In(t3+1)
0 t34+1

The remaining terms lead to the result for dt given above.

11.3 Other integrals of similar structure involving In(z? + 1), p = 3, 4, 5, 6, etc.

The contours of Figures 11.1 and 11.3 readily lend themselves to the evaluation of loop integrals of
zIn(2% 4+ 1) /(2% £ a®). The steps are in every respect equivalent to those set out in §10.2 and 10.3 for the
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cases of In(2® + 1)/(23 + @?), and the changes amount to little more that a few changes of sign and the
incorporation of the extra z in the numerators of various terms. In passing one finds that

dt =
3 — a3 9a2 ’

/°° t /3

and the results are as follows:

/Ooo ehn@+1) , L<W+\/§ln(a+l)+2tan_1 <a_2>).

z3 —ad 3a aVv3
® zln(z3 + 1 272 In2
For a=1 : / wd$:i+u:3.4504753
0 z3—1 9 V3
0 3 2 1
and for a=2 : / eln(em+1) oo TS 61965
0 z3—8 6 2V/3

These must be regarded as the Cauchy principal value of the integral through the singularity at z = a.
As a ready variation of §10.3

* zln(z3 4+ 1) T 9 1 fa+2
/O dezﬁ[\/gln(a —|—a+1)—2tan a\/?_) + 7

At a = 1 it reduces to

* zln(z3 4 1) wln3 w2
————dx = — = 3-089285 Eq.11.3
/0 z3 41 v V3 + 9 7
in agreement with the value in Eq. 4.3 e of §4.7, quoted from Gradshteyn and Ryzhik’s tome. The integral
for a =2 is

%(\/5 In7 — 2tan~! (\%) —|—7r) — 2.51215574.

In principle the contours of Figures 11.1 and 11.3 can be further adapted to values of exponent p other
than 3 simply by adjusting the angle of the contour wedge and its branch cut to be at 27/p and «/p
respectively. I consider the case

* In(zP 4+ 1 In(zP +1
I, = M dr by integrating M dz around Figure 11.3.
P 0 zP + aP zP + aP

The contribution from v, 4+ 2 + 73 is
(1 —=c2)I, + 2ms2Y, — 1521, — 12mc2Y)

where I, is the required real integral and

ot 2sin(Z)
Y, = / S p2 for p a positive integer > 2,
o tP+aP  par~l 1 —cos(F)

the evaluation coming from §6.9. In these s; = sin(n/p), ¢; = cos(w/p), s2 = sin(27/p), ca = cos(27/p).
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The contribution from v4 + 5 + 76 is

dt
aP — 1P’

1
2n(—s1+1¢1) Z, where Zp:/
0

Also 2mix (the residue at a e*™/P) is

2

par1 [s1In(a? = 1) + c1m 4151 —vc1 In(a? —1)].

Adding the real and imaginary parts of the loop integral, we find

27
Real: (1 —c2)lp, + 2ms2Y, — 21812, = Sar1 [s1In(a? — 1) + ¢y 7]
2w
Imag: —so I, — 2melY, + 2mei Z, = — [s17m — ¢1 In(a? — 1)].
pa

These are a pair of simultaneous linear equations which, when combined as in §10.3, give the value of
Y, already found in §6.9 and quoted above. This indeed in an alternative derivation of the value of the
integral Y,,. The equations by themselves cannot furnish values for both Z, and I,, so there seems no
alternative to evaluating Z, directly. This can be done by splitting 1/(a? — t?) into partial fractions in
terms of the complex roots of a? — ¥ = 0. Thus

1 1 2w
2
= + E — 2% where woyy = 27F/P,
tP — aP t—a k—1t_aw2k

This can now be integrated as a sum of complex logarithms. Unfortunately, for most values of p the
results are complicated. The first few cases are

1 1
Ty= — [ln(a +1)—In(a—1)+2 tan™? <—)] which leads to
4 a3 a

ooln(x4+1) T2 . » 1
/0 de: e [ln(a +1)+2In(a+1)+2 tan )

When a = 1 this reduces to

0 4 1 2
/ n(z*+1) , _ %(6 In2—7) = 0- 5649628,
0

zt+1

a value confirmed by numerical quadrature. For p = 5 the complicated Z5 is equal to

(x/5+1)1n <2“2+(‘/52+1) a+2) +(1—\/5)1n <2“2+(1_2‘/5) “+2) —4ln(a—1)

1
20a*

+2v21/V5 + 5tan™?

V2 (V5+5)° —— . (V2V5—5 (V5-5)
T(V5a+5a_va) | H2Y2VE - Votan (4(\/5(1_5@_@))
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Solving for the integral for the case a = 1 we obtain the awkward but exact formula

L (\/5+5)%

* In(z® +1) -7
L= 20T e T |8msise+ 281 (ca — )V2YVE+5 tan~t | o2
. /0 7 sys + 281 (ca — 1) —

z° 41 10 (¢c; — 1)?

5+V5 [ V2V5E-V5 (VE-5)
+81 (02—1)\/5 In <5_\/3> +281 (1—02)\/5 5—\/51]811 ( 20 >

+51(c2 —1)In3125 + 47y (ca — 1)]

where s; = sin(7/5), etc. as above. The value of this is 0 - 41453484.
Finally, for p = 6 the general solution is

/OO In(z® 4+ 1)

z% + ab

dz= == [31n(a* + 20> +2a+ 1) +In (a* +1) +23 (tan™! (£22) = 7))

a?-1

which reduces for a =1 to

* In(z% + 1
/ M@+ D) T(4ln2+3In3 - 7v/3) = 0- 3283108,
0 0 +1 6

1 3
1 1
12. Attempt to analyse and evaluate / M

N dx using series

T have set myself the challenge of getting as far as I possibly can towards a closed form evaluation of this
integral. I confess now that I have been unable to find a wholly closed form expression for it; a small
part stubbornly remains as an infinite series. Indeed I suspect that a closed form does not exist. So let
me make this conjecture;

“The only integrals of the forms

1 P o0 D
/ In(z? + 1) dz and / In(z? 4+ 1) I
0 $2 + ]. 0 552 + ].

which have a closed form evaluation are those with p = 1 or 2, or p an integer multiple
of 4, or p twice an odd prime. In particular no closed form evaluation exists if p is a
fraction, or an odd prime, or an odd multiple of an odd prime.”

I herewith invite other enthusiasts to prove this either correct or incorrect.

In §12.1 T explain why I think that evaluation by complex contour integration is intractable. Next, in
§12.2, T present my attempt to evaluate it using a series expansion. In general, determining an integral
from an infinite series is usually the last resort of the desperate; it is more usual to work the opposite
way and use an integral to evaluate an infinite series. I have failed to find a closed form summation of
the series expansion of the integral. However, I have found some interesting sub-series, which may throw
some limited light on the structure of the integral.
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12.1 Why most real integrals involving In(z? + 1) for p = 3 and other odd primes are intractable

In §11 T showed how to solve in closed form fol In(z3 +1)/(2® + 1) dz. This is possible by contour
integration because the argument of the logarithm is the same as the denominator — or, to be more
specific, has the same zeros as the denominator. However my attempts to find a contour to evaluate
fol In(z® + 1)/2% + 1 have all failed. 1 have been reduced to attempting integration using infinite series,
as described in full in §12.2. So why is the latter integral so intractable while the first can be done?

In attempting a contour integration we are free to choose

a) the argument of the logarithm, with a view to generating the desired real integral,

b) the multiplying rational function, also with a view to generating the desired real integral,

c¢) the contour, avoiding poles and branch cuts.
Regarding a) we saw in §9 that the real integral we want does not have to feature directly on the contour,
but may be generated by some related though non-obvious complex function. For instance, in §9 we
determined that

<] 4 1 1 o
/0 ng—:l) dz = wIn(2+v2) by evaluating ]{ 11(22%?1) @

However my attempts to find an argument which will generate In(z® + 1) and provide z? + 1 in the
denominator have all failed. Regarding b), the ‘limiting wedge contour’ discussed in §10.2 manipulates
the rational function but still fails to yield the required integral. Regarding c), the methods used in §11

to evaluate s )
1 1 1 n41
i / % dzand ii) / In@z™ +1
0 x° + 1 0 1'2 + ].

3
give some insight into why it is probably not possible to use contour integration to evaluate OOO lnf; ++11) dx.

Consider in integral i) the 27/3 sector contour. Any segment of contour which gives real values for 23 + 1
must give complex values for z? +1 in the denominator. Then, when the denominator is rationalised at a
later step in the calculation, it is multiplied by its complex conjugate. This both creates unwanted square
terms in the denominator and creates additional intractable integrals involving arctangents. Consider in
case b) the device of having a complex argument for the logarithm while selecting sections of contour on
which 22 + 1 is real. When the logarithm is evaluated we find its square modulus and its argument, and
this process creates square terms and additional intractable integrals involving arctangents. I have been
unable to find a contour for our required integral which avoids these problems.

In(z3 + 1

@ dr
T

Notwithstanding the expectation that integration using expansions in infinite series is unlikely to succeed,

I will get as far with this approach as I can, hoping that it sheds some insight into the structure of this

integral.

12.2 Series expansion of

Numerical quadrature gives the value of the integral from 0 to 1 as 0-12470402235, and of the integral from
0 to infinity as 2-99730482723. I showed in §9.6 the relation between these, why 2x0-124704022354+-3x G =
2-99730482723. The binomial expansion of 1/(z% + 1) is strictly valid only for |z| < 1, but T will attempt

to evaluate the integral fol using this series, taking the limit x — 1. This gives the infinite series

1 3 l1—¢ 3
In(z°+1) In(z®+1)
/0 Wd"’;_il_%/o ] @=h-LtL-I+- Eq12.1
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c
where I, = lim [ 2" In(z® + 1) dz.
c—=1 J

The function I,, has a recursion relation which is obtained by integration by parts using u = 2”2
dv = z?log(z® + 1) du:

9

1
Lnss = —— [—(n +1)I, +2In2 — ] Eq12.2

n+4

Since we are stepping in Eq. 12.1 in steps of 2 but the recursion relation steps in 3, we have to advance

in steps which are the lowest common multiple of these, which is 6. A double application of Eq. 12.2
gives

1 1 1

With this we construct the series in Eq 12.1 as three the interlocking series, which I will name the Iy, I,
and I, series :

I(] series : I(] —IG+112 —118+I24—

I, series : Iy — Ig + I14 — Izo + Iz6 — - - - ( use negative of this in sum)

I4 series : I4—Il(]—|-116 _I22+IQ8 - e

Taking the limit € — 0 the base cases in the recursion relation are

0
In=—=+2In2-3
0 73

3, =2In2 -1

—T 9
I,=—+2n2+ —
54 \/§+ Il+10

(The reason for the multiples of 3 and 5 will become clear shortly.) Now use the 6-stepping recursion
relation, Eq 12.3, to develop these three series:

+ sign : Ioz%IO

—sign: Ig= 2 [li+3(;—13)]

+sign: Lao=%[L+3(3-2+L%-3)]

—sign: Is=%5[l+3(3-1+5-5+5—5)]

+sign: Lu=4[Lh+3(3-1+L-L+L-L+2L 1)

—sign: _[3(]:"'

The + or — sign in the first column above indicates whether the corresponding I,, term is added or
subtracted in summing the series.

—sign: I, = 33D

+sign: Is = §[3L+3(5—3)]

—sign: Iu=%+BL+3(:i-t+5 - %)

+sign: Iy=2+[BL+3(i-t+5-2+L1-2)]

B )
+ sign: I3p =---
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and

+sign: Iy = %5]0

—sign: Io=3 [l +3 (5 — 5)]

Fgn o= 03 (- )

—sign: Ip=£ BL+3(i-H+d—m+5—25)

T A | T )

—sign: I3y =---

In each I,, there is a term in either Iy, 315 or 514. Separate these out and add them together to form a
partial sum; call it J. The remaining terms, involving 3x (finite sum of reciprocal integers) are added to

form 3K. Thus ) s
/ @ 1) 4 — 54 3K
0 xe + 1

and

I will deal with these parts J and K in turn.

First J. Fortunately this can be summed in closed form by using the integral forms of the series

o~ (CDF
R =/ mdgg:%[7r+ln(2+\/?_>)]=0-903772

1,11 S e L E e
§—§+E—ﬁ+'“—26 =), w Tz

4

— (=1)F bz
%—ﬁ+ﬁ—%+---=26k+5: i mda::%[7r—1n(2+\/5)]:0-143426.

Combining these with the values of Iy, I and I4 gives exactly

T 13 T 47
= - - — —In2 - —=0- . 12.
J <3 20 3) In(2 + \/§) + 5 n 5 0-1474753961 Eq.12.4
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Taken with the numerical quadrature value of the integral (0 - 12470402235), this value of J leads us to
expect that K must be —0 - 0075904579. So let us turn to the series which make up K and see if this
holds true.

12.3 Structure and evaluation of the series K

T have been unable to sum exactly the series which make up K. (See footnote.) This section discussed
three approaches to determining its value and revealing its constitution.

A diagram of the values is helpful so I have drawn up the following matrix to represent the denominators
of the various terms contributing to K. Each term has two factors in the denominator and these are
denoted by the row and column. The sign in the cell shows whether it is added or subtracted. As an
example, the + sign in cell of row 9, column 6 means that a term +1/(6x9) appears in K.

Table of denominators of terms in K

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

25 + — + — + — + —
26
Note that there are no entries in column 5.

The first approach to evaluating this is direct numerical addition. The terms down to row labelled 20,001
add to about —0-007590. This gives confidence the analysis so far. However direct addition shows that
the series converges slowly and high accuracy is not readily attained.

Here is a free English language lesson. Note that I am using correct English grammar here by saying ‘to sum
exactly’. Much current usage, even by BBC news readers, would say ‘to exactly sum’, but this is crude and incorrect in
traditional British English grammar. The reason is that the infinitive of the verb is ‘to sum’and this should not be split by
any qualifying adverb such as ‘exactly’. In the past, exception was made only for emphasis, when the adverb ‘exactly’had
much greater significance than usual. In most languages the infinitive of the verb is a single word so the option of splitting
it does not arise (e.g. ajouter, additionner in French). For English, the rot set in when Captain Kirk of the Star Ship
Enterprise decided ‘to boldly go’. Now back to the maths.
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The main diagonal in the N\, direction, bounding the triangular array, represents the series
1 1 1 1 _ 1 1 _
7—2—9—2+m—@4‘"'—1—3—2+5—2—G—0-0129232947

where G is Catalan’s constant (see §5.1). Note also that the terms along any perpendicular diagonal
(top right to bottom left, ,/ ) are all much the same size. For instance, along the diagonal containing
92, 9x9=281,8x11=288,7x 13 =91, 6 x 15 =90 and 4 x 19 = 76. This gives us our next method
for estimating K. In the / diagonal containing n? there are n — 4 entries (because the columns in 1, 2,
3 and 5 are blank). The contribution from this one diagonal therefore amounts to about (n — 4)/n? in
absolute value. Since only odd values of n appear in the table,

o)

(2k + 1) . n 1
R e e Rt RIS S
k=2
where I have used the Gregory series for tan™11 =2 =1 — % + F— % + 5 — ---. This works out to be
1G - T — % = —0-010425. Though this is not an accurate approx1mat10n it does give some insight

because a) it is of the correct order of magnitude, b) it indicates the presence of both = and Catalan’s
constant in K. More accurate approximations can be obtained by summing the first few diagonals exactly.
For example, the first four ,/ diagonals, down to and including the one in 112, sum to 0 - 01965 whereas
the approximation used for these rows is 0-01735. Use of the correct sum for these four diagonals changes
the estimate of K to —0 - 00812 which is much closer to —0 - 00759. Regrettable, the difference between
the exact sum and the approximation appears not to decrease indefinitely as n increases. In fact two
sub-series can be separated, characterised by the sign of the last term: one for n = 1 mod 4, for which
the error converges from above to be about —0 - 0022 at n = 1001, and the other for n = 3 mod 4, for
which the error converges from below to about —0 - 0034. It might be interesting to give this further
investigation, but not here!

My third and most accurate approach to summing the series for K is to sum in the other diagonal
direction, \, , parallel to the boundary diagonal. We have already noted that the main diagonal sums
to 1 — 3% + 5% — G =. Call this Diagg. In the first parallel diagonal, Diag;, the two factors in the
denominator differ by 3 e.g. 4 and 7, 6 and 9, 8 and 11. To sum the parallel diagonals, Diag;, Diags
etc., split each denominator into two using the identity

1 101 1
—_ = |- - Eql2.5
n(n + k) k[n n—i—k] 1

This splitting replaces Diag; by

11,1 ,1_1_141 1 1
sl-i+tits— s statn 1m0
which can be reorganised as
11,1 _ 14 1 114 1 1
sl-i+s—s+m— ti-sta ot
Now introduce the notation
S, i L4 L Lo+
=



The sum of each / diagonal can now be written as follows:

Diagy: 1-— 3% + 5% G
Diagy : % [—Ss+ 57]
Diags : % [—S7 + Si3]
Diags : 5 [+S84 — Si3)
Diags : 35 [+S7 — S1o]
Diags : 7= [—S5 + S19]
Diage : 75 [—S7 + Sa3]
Diagr : 55 [+S4 — Sas]
Diags : 35 [+S7 — Sa1]
Diagg :  ---

Note the patterns in signs and indices of S,,. For each diagonal the first term has the repeated pattern
unit —S4, —S7, +S4, +57, whilst the second term follows +57, +S13, —S13, —S19, +S19, +S525, —Sos,
—S31, etc. Adding all these gives

K=l-d+h-Grsi[-h4f-dtdh-]+5((})-

[N

1 1 1
+i5 -5t
11 1 1 1 1 1 1
+813 [5 = 5] = S10 [ — 75] + S2s [15 — 2] = S [55 — 5] + -+
We met the series multiplying S4 in the evaluation of J: it is —m/12. The series multiplying S7 is

1
3= In2.

o=
—
—
|

1 1 1 _ 1
sti—itl=3-

[N

Sy itself is —% [(—1 + % — % + % —|—) + 1] = %(1 —1In2), while S; =1— % + % — &. Moreover, Eq. 12.5
can be used in reverse to recombine the partial fractions multiplying Si3 et. seq.. Also we can take out
a factor of 6 from the Sy3 and higher terms. Taken together these substitutions give

™ 13 ™ 274 1 513 Slg 525
K=-G+|———)In2— — 424|218 _219 225 Eq.12.
+<12 90)“ s o5 3|23 15 " 6x ¢-12:6
or 3K = —0-02862794996 + S WhereS=%—%+%—---

23 45 6.7

So far this is exact. So evaluation of the required integral comes down to the evaluation of the infinite
series S. T cannot see how this can be done in closed form; hence my conjecture that a closed form
expression does no exist. However we can make numerical calculations of the constituent S, to a fair
accuracy as follows.

Each S, consists of the series for tan=! 1 with all terms before 1/n deleted. For the smaller values of n
these can be readily computed exactly, and indeed there seems no alternative to so doing. For instance,

gL T W o _w 622637 o 1 1 1
1374 7 3465 Y T 7estes TR 13 T 15 17

Note the alternating sign. It means that there are effectively two sub-series, depending on whether the
last deleted term, 1/(n — 2), was + or — in sign,. This implies significant cancelling between adjacent
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terms and suggests that it may be useful to take adjacent terms in pairs. To give some idea of the
magnitude of adjacent pairs,

Sy5 = 004138661939

S = 0- 02769332028  S13/(2 x 3) — S19/(4 x 5) = 0- 00551310388

Sys = 0 - 02079747192

Sap = 0-01664824967  Sas/(6 X 7) — S31/(8 x 9) = 0 - 00026395221

Ss7 = 0- 01387821312

Sys = 0-01189803217  Ss7/(10 x 11) — Sy3/(12 x 13) = 4 - 98961367866 x 10>
S49 = 0- 01041215530

Ss5 = 0-00925608935  Syo/(14 x 15) — S55/(16 x 17) = 1- 555195166 x 107>
Se1 = 000833102172

Se7 = 0-00757402041  Se1/(18 x 19) — Ss7/(20 x 21) = 6 - 3263307066 x 10~°
S73 = 0- 00694310614

Szo = 0- 00640920365  S73/(22 x 23) — S79/(24 x 25) = 3 - 0395475576 x 10~°

The sum of these terms from S;3/(2 x 3) up to and including —S79/(24 x 25) is  0-071813125114 7 —
0-21975571623 = 0 - 005851870063 which, given exactly, is

7690078169 37739720524594343826970071627016964789471
107084577600 " 171734875308418929742520901052680453210000

Though this is a many digit fraction, it has a simple structure and shows the continuing role of 7. Using
the Maxima program I have summed this series for S directly to 250 and then 400 terms. The value
obtained is S = 0 - 0058565761.

12.4 Further analysis and asymptotic behaviour of the series for S
Rather than just accept this numerical computation of the series for S, I have looked into its structure
and in particular its asymptotic behaviour. The next couple of pages explore this. S can be written as

f: 1)1 Sep7
— 2k(2k + 1)

and, because of the alternating signs and consequent cancellation, it seems appropriate to the sum
adjacent terms for k and k£ + 1. We obtain the cumbersome expression

Sek+7 1 [56k+7 1 1 1

%eh+1) | 2kt 2)(2k+3) Tok+7  6k+9 6kl

which is always positive in sign. For large k this sum of pairs can be expanded as a Taylor series in 1/k

as
Ser+7 18 Sepy7 +1

2k2 2443

showing that successive terms tend to zero faster than 1/k? (faster because the Sgj,47 also decrease).
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In order to sum S we now need a reliable approximation for .S,,, such as an asymptotic series, as n tends to
infinity. T have considered the Euler-Maclaurin sum formula to find such a series. This formula effectively
approximates a finite sum by a finite integral plus a series, and an error term whose magnitude can be
estimated. I believe I have found an even more accurate series, similar in structure to that obtained from
the Euler-Maclaurin method. It is derived by considering that tan=! N is a reasonable approximation to
the sum over k — N of 1/(2k — 1). By numerical experiment I found that the error was roughly equal to
1/(4N) and so used this to improve the approximation. I then computed residual errors and found them
proportional to 1/N3. There are two series, depending on the sign of the last deleted term. In this way
I developed the following two approximations, which have some semblance of asymptotic formulae:

Series approx for N even

~ Ltanm !N+ — - ——— h N
27 — 1 an Nt AN TNt VP 961 Y 5199

iV: 1)U+D) 1 1 1 541

As examples of the accuracy, the errors for some values of N are

N =10 1.26E — 07
N =20 —6.6E — 09
N =100 —1.1E —-10
N =400 —14F —11
N = 2000 —14F — 14
N = 10000 1.1E — 16

The equivalent approximation for N odd is

3 0.22917 1 11
— A PO | 1 2 . ~
Y g(N) 9 — 1 ~ stan” "N + N N3 + F00NA where (- 22917 =~ 3

Examples of errors are

N =11 9.57E — 07
N =21 3.35E — 08
N =101 9.6E — 13
N =401 —8.4E — 15
N = 2001 2.2E — 16
N = 10001 11E — 16
In general
Sersr = % — B4 (3k + 3) for k odd
—Sepsr = % — S p(3k +3) for k even
With k = 1

S13 &~ % — %tan_1 6 —0-0411849 = 0- 0413894,
in encouraging agreement with the true value 0-0413866. Using both the N-even and N-odd approxima-

tions, the error in S13/6 — S19/20 is 6 x 10~7. For a general odd value of k the sum of the pair of terms
corresponding to k and k + 1 is approximately
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1
8k(k + 1)(2k + 1)(2k + 3)

[(4K® + 6k + 3)m

P(k)
(3(k +1)2(k + 2)*

—2(k 4+ 1)(2k + 3) tan~ ' (3% + 3) — 2k(2k + 1) tan~*(3k + 6) —

where

P(k) = 8k" + T4K® + 286k° + 600k + 749k + 565k + 242k + 46.
This involves inverse tangents but these in turn have the asymptotic form

pntN=T_ L, 1 Lo 1y

an < —— — -

2 N 3N3® O5N5 T7NT

With this the sum of a pair of adjacent terms can be approximated closely by a rational fraction in k
alone. For accuracy I have evaluated this as a (degree 16 polynomial)/(degree 20 polynomial) which

begins

612360 k16 + 10379880 k15 + 79510410 k% + 416871756 k2 + - - -
9797760 k20 + 205752960 k19 + 1988945280 k18 + 11727918720 k17 + - - -

Using this, the approximate value of S73/(22 x 23) — S79/(24 x 25) is 3.27 x 107 compared with the
true value of 3-04 x 1075, For very large values of k this can be approximated further by a Taylor series
in 1/k. (Here, to control untidy fractions, I have approximated the higher coefficients by their simpler
convergents in continued fraction expansion.) The first few terms are

Eq.12.7

1 1+23+88 41+66 101+
16k* 4Kk5  31KkS  25k7T 6k®  HK9 4FK10
Note that although the coefficients increase, successive terms decrease for values of k greater than about
5. This, therefore, simplifies the form of the asymptotic approximation, while the loss of accuracy from

using this simplified power series over the rational approximation, Eq 12.7, is small for k greater than
about 7.

Eq12.8

In summary, for a given large value of k Eq. 12.8 gives the approximate sum of the pair of terms for k
and k + 1 in the series involving the Sgr47 which make up S. In calculation, k steps by 2.

Using this asymptotic approximation I have summed the terms in the Sgi7 series from k = 13 effectively
to infinity, and find the value 4 - 826 x 1076, This is to be added to the exact values for the first 12
terms of the series, which was found above to be 0 - 071813125117 — 0 - 21975571623 = 0 - 00585187006.
Together they give S as 0-0058567. Nevertheless, for accurate numerical work T will return to using the
directly calculated value of S = 0 - 0058565761 quoted at the conclusion of §12.3. Add to this the other
terms in 3K from Eq.12.6 and we have, numerically, 3K = —0 - 02277137391, as required to match the
value of the log integral obtained by quadrature.

12.5 Collecting results for J and K
We are now in a position to determine our concluding value of the integral, using the J and K constituent
sub-series. We have split

1 3
/ hl(zgi—i_l)da:intoJ—i—3K.
0 X +1
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From §12.2 Eq 12.4 we found

T 13 T A7
J = <§—% 3) ln(2+\/§) + §ln2 — E—0-1474753961.

<7T 13) In9 — 3_71' 274 4 |:513 Slg 525

s 75 Tl23 45 T6r

1 3
In(z° + 1) ™ 13 3m 13 7 274
T = (T~ 22v3) (2 MV m2-3G - Lar 224 s Egl2
/0 221 <3 20 3) n(+‘/§)+<4 30)n 20"t Tt ¢-12.7

= (-1247040222

in excellent agreement with numerical quadrature.

In closing this section we might pause to consider what is the meaning of the above integral, which seems
not to be expressible in closed form. I have obtained a solution of sorts, but it is probably not unique
because there will be other ways of splitting up the infinite series involved and summing the resulting
sub-series. But the fact that I have had to resort to a series solution in the first place is strong evidence
that this integral cannot be evaluated by contour integration. Perhaps the only real integrals which can
be evaluated analytically by contour integration are those which have a closed form, and not ones which
require effectively a new functional series to be defined. It therefore raises for me the larger question of
the relationship between contour integrals and series evaluation of real integrals. I invite comments from
readers.

Finally, a comment about Putnam-type integrals involving fractional powers. I showed in §8.1 that the
substitution u? = z makes
o0 ] k/2 1 % 1 Eyq
/ @) g, — g / uln(u®+1)
0 x< + 1 0 U/4 + ].

and we are interested in cases where k£ an odd integer. I doubt whether any of these cases can be evaluated
in closed form, and hence whether they can be performed by contour integration, even for £k = 1. For
k > 3 k is coprime to the 4 in the denominator so it is not possible to have two sections of contour on

which both u* 4+ 1 and u* + 1 are simultaneously real, which seems to be a condition for evaluating these
integrals. I leave this open as a challenge to any reader bold enough!

This concludes my hobby investigation of integrals of the logarithm, generalising the Putnam challenge
integral.

John Coffey, Manchester and Cheshire, England. 2008. e-mail comments to batemill@googlemail.com
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In(z + 1)
z2+1
There is the well known MacLaurin-Taylor series for In(xz 4 1) valid for —1 < z < 1:

1
Appendix: A proof of the Putnam integral / dz using infinite series
0

) 22 x3 ozt b

=r—- — 4+ — — — 4+ — — ... Eq.Al

In(z + 1 5 3 1 7

It seems reasonable to divide by 22 + 1 and integrate term by term, then try to identify the resulting
series with the product of a series of m and a series for In2. I tried this approach first; here is how it goes.

The series for In2 comes by putting . =1 in Eq. Al:

1 1 1 1

mo=1_ -4+, 1 .
n 537175 Eq.A2

The series for m comes from the Gregory series for arctan z, using arctan1 = 7 :

T 1+1 1+1
4 3 5 79

Use the binomial theorem to write:

2+ =1-2? 42 —2%+..., lz| <1
so the integrand is the product of two infinite series:
In(z +1) 2?2z ozt 1 9 4 6
s S e A T —
221 <x 2+3 4+5 ( -+ x x+)

In multiplying this out it is useful to work in columns of powers of z and record only the coefficients of
x:

1 1 1 1 1
1 1 1 1 1
2 1 2 1 2 1 2 1 2
(T T S
4 1 4 1 4 1 4
R
6 6 6

Integrate term by term and again record the coefficients of " in a triangular table:

1

z :E2 zS z4 5 zG 7 :1:8 9 9:10 9:11
1 1 1 1 L
2 S 6 e 8 1 10 e
23, 25 27 4 29 2.11
34 1 3.6 1 3.8 1 3.10 1
&5 Y 9 4 411
56 58 510



When the limits of integration, 0 to 1, are substituted, this table of coefficients becomes a table of
constants which are to be added to give the value of the integral.

From this table produce another table as follows. Starting at each non-zero value in the top row in turn,
read down the column then right across the next lowest row in this fashion |—. There is a common

: . : 1 11 11 1 11,1
factor in each such patlll, for. 1ns‘ta¥1ce the path ¢, —3%, 5.6° 6.7 6.00 BaTr has the factor 5 = 5 X 3.
Take out the factor of 5 which is in every term. Hence arrive at the table

1 1 1 1 1
L[ 1 -3 +5 -7 +5 —11 ]
1 1 1 1 1 1
-2 L1 =3 +5 =% *5 -1 ]
1 1 1 1 1 1
+3 [ 1 -3 +5 —% +5 —u ]
1 1 1 1 1 1
-1 [ 1 =3 +5 —% +5 -1 ]
+5 [ 1 -3 +5 -7 +5 —% ]

The bracket, repeated every row, is 7 and the vertical column of multiplying factors is In2. With the

factor of % taken above, the definite integral is evaluated as g In2. Q.E.D.

Strictly, we now have to prove that this manipulation of infinite series is valid. But that’s another story

¥ Quod erat demonstrandum = ‘which was to be proved ’; all old maths books used this Latin
expression to signal the successful completion of a proof.
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